Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Learning-based trajectory optimization for 5G mmWave uplink UAVs

Susarla, Praneeth; Deng, Yansha; Destino, Giuseppe; Saloranta, Jani; Mahmoodi, Toktam; Juntti, Markku; Sílven, Olli (2020-07-21)

 
Avaa tiedosto
nbnfi-fe2020110288921.pdf (681.8Kt)
nbnfi-fe2020110288921_meta.xml (45.53Kt)
nbnfi-fe2020110288921_solr.xml (33.73Kt)
Lataukset: 

URL:
https://doi.org/10.1109/ICCWorkshops49005.2020.9145194

Susarla, Praneeth
Deng, Yansha
Destino, Giuseppe
Saloranta, Jani
Mahmoodi, Toktam
Juntti, Markku
Sílven, Olli
Institute of Electrical and Electronics Engineers
21.07.2020

P. Susarla et al., "Learning-Based Trajectory Optimization for 5G mmWave Uplink UAVs," 2020 IEEE International Conference on Communications Workshops (ICC Workshops), Dublin, Ireland, 2020, pp. 1-7, doi: 10.1109/ICCWorkshops49005.2020.9145194

https://rightsstatements.org/vocab/InC/1.0/
© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/ICCWorkshops49005.2020.9145194
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe2020110288921
Tiivistelmä

Abstract

A Connectivity-constrained based path planning for unmanned aerial vehicles (UAVs) is proposed within the coverage area of a 5G NR Base Station (BS) that uses mmWave technology. We consider an uplink communication between UAV and BS under multipath channel conditions for this problem. The objective is to guide a UAV, starting from a random location and reaching its destination within the BS coverage area, by learning a trajectory alongside achieving better connectivity. We propose simultaneous learning-based path planning of UAV and beam tracking at the BS side under urban macro-cellular(UMa) pathloss conditions, to reduce its sweeping time with apriori computational overhead using the deep reinforcement learning method such as Deep Q-Network (DQN). Our results show that our proposed learning-based joint path planning and beam tracking method is on par with the learning-based shortest path planning, besides beam tracking comparable to heuristic exhaustive beam searching method.

Kokoelmat
  • Avoin saatavuus [38865]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen