Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

On online hate speech detection : effects of negated data construction

Abderrouaf, Cheniki; Oussalah, Mourad (2020-02-24)

 
Avaa tiedosto
nbnfi-fe202002256445.pdf (326.6Kt)
nbnfi-fe202002256445_meta.xml (28.66Kt)
nbnfi-fe202002256445_solr.xml (26.83Kt)
Lataukset: 

URL:
https://doi.org/10.1109/BigData47090.2019.9006336

Abderrouaf, Cheniki
Oussalah, Mourad
Institute of Electrical and Electronics Engineers
24.02.2020

C. Abderrouaf and M. Oussalah, "On Online Hate Speech Detection. Effects of Negated Data Construction," 2019 IEEE International Conference on Big Data (Big Data), Los Angeles, CA, USA, 2019, pp. 5595-5602. doi: 10.1109/BigData47090.2019.9006336

https://rightsstatements.org/vocab/InC/1.0/
© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/BigData47090.2019.9006336
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe202002256445
Tiivistelmä

Abstract

In the era of social media and mobile internet, the design of automatic tools for online detection of hate speech and/or abusive language becomes crucial for society and community empowerment. Nowadays of current technology in this respect is still limited and many service providers are still relying on the manual check. This paper aims to advance in this topic by leveraging novel natural language processing, machine learning, and feature engineering techniques. The proposed approach advocates a classification-like technique that makes use of a special data design procedure. The latter enforces a balanced training scheme by exploring the negativity of the original dataset. This generates new transfer learning paradigms, Two classification schemes using convolution neural network and LSTN architecture that use FastText embeddings as input features are contrasted with baseline models constituted of Logistic regression and Naives’ Bayes classifiers. Wikipedia Comment dataset constituted of Personal Attack, Aggression and Toxicity data are employed to test the validity and usefulness of the proposal.

Kokoelmat
  • Avoin saatavuus [38840]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen