Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Neuromorphic thermal-electric circuits based on phase-change VO<sub>2</sub> thin-film memristor elements

Lappalainen, J.; Mizsei, J.; Huotari, M. (2019-01-22)

 
Avaa tiedosto
nbnfi-fe2020111390098.pdf (2.279Mt)
nbnfi-fe2020111390098_meta.xml (30.54Kt)
nbnfi-fe2020111390098_solr.xml (36.65Kt)
Lataukset: 

URL:
https://doi.org/10.1063/1.5037990

Lappalainen, J.
Mizsei, J.
Huotari, M.
American Institute of Physics
22.01.2019

Lappalainen, J., Mizsei, J., & Huotari, M. (2019). Neuromorphic thermal-electric circuits based on phase-change VO2 thin-film memristor elements. Journal of Applied Physics, 125(4), 044501. https://doi.org/10.1063/1.5037990

https://rightsstatements.org/vocab/InC/1.0/
© Published under license by AIP Publishing. This article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. This article appeared in Lappalainen, J., Mizsei, J., & Huotari, M. (2019). Neuromorphic thermal-electric circuits based on phase-change VO2 thin-film memristor elements. Journal of Applied Physics, 125(4), 044501. https://doi.org/10.1063/1.5037990 and may be found at https://doi.org/10.1063/1.5037990.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1063/1.5037990
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe2020111390098
Tiivistelmä

Abstract

The basis of the powerful operation of the brain is the variability of neuron operation, i.e., it can be digital or analog, and the logic operation of a neuron-based system can be parallel and series. The challenge is to set up an artificial intelligent architecture that mimics neuro-biological architectures present in the nervous system. Our proposed new active device (phonon transistor = phonsistor) and thermal electric logic circuit (TELC) seem to be appropriate devices for neuron modeling. Key elements of the phonsistor and TELC are memristors realized by VO2 phase change output resistors integrated with dissipating elements as inputs. These components are coupled to each other by thermal and/or electrical effects. On short distances, the information can be carried by heat diffusion and on longer distances by electrical signals. This is a similarity with human neurons where the information is carried by diffusing neurotransmitter molecules on short distances and electrically by the axons on longer distances. For example, very new ideas are presented of neuromorphic circuits for mimicking the biological neuron synapse operation and the action potential generation. Further similarities with biological neural systems are the auto-oscillation phenomenon with chaotic properties, the ability of integrating subthreshold excitations within the thermal time constant, and the memory effect of the memristive components. The TELC should be compatible with CMOS technology, as the realization of both systems utilizes conventional thin-film technology steps at similar temperature ranges. The physical appearance and construction of the TELC gate are also similar to the neuron.

Kokoelmat
  • Avoin saatavuus [38841]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen