Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Monitoring vegetation height using data acquisition from ubiquitous multi-sensor’s platform

Nasim, Sofeem; Oussalah, Mourad; Haghighi, Ali Torabi; Klove, Bjron (2019-11-08)

 
Avaa tiedosto
nbnfi-fe202001202597.pdf (855.6Kt)
nbnfi-fe202001202597_meta.xml (38.44Kt)
nbnfi-fe202001202597_solr.xml (31.96Kt)
Lataukset: 

URL:
https://fruct.org/publications/acm25

Nasim, Sofeem
Oussalah, Mourad
Haghighi, Ali Torabi
Klove, Bjron
FRUCT
08.11.2019

Nasim, S., Oussalah, M., Haghighi, A. T., Klove, B., Monitoring vegetation height using data acquisition from ubiquitous multi-sensor’s platform, Proceedings of the FRUCT’25, Helsinki, Finland, 5-8 November 2019, ISSN: 2305-7254, p. 539-545

https://rightsstatements.org/vocab/InC/1.0/
© The Authors 2019.
https://rightsstatements.org/vocab/InC/1.0/
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe202001202597
Tiivistelmä

Abstract

Vegetation height plays a crucial role in various ecological and environmental applications, such as biodiversity assessment and monitoring, landscape characterization, conservation planning and disaster management. Its estimation is traditionally based on in situ measurements or airborne Light Detection and Ranging sensors. However, such methods are often proven insufficient in covering large area landscapes due to high demands in cost, labor and time. Since, the emergence of wearable technology, ubiquitous sensors and Internet of Things offers an appealing framework for monitoring environmental parameters at extremely low cost, which, in turn, contributes to the development of affordable real-time vegetation monitoring system. This is especially relevant to rural environments and underdeveloped countries. We proposed a methodology for data acquisition from a ubiquitous sensor wearable platform and developed a machine-learning model to learn vegetation height on the basis attribute associated with pressure sensor. The proposed methods are proven particularly effective in a region where the land has forestry structure. The results of linear regression model (r2 = 0.81 and RSME = 16.73 cm) and multi-regression model (r2= 0.83 and RSME = 15.73 cm), indicate a promising alternative in vegetation height estimation when in situ or Light Detection and Ranging data or wireless sensor network are not available or affordable, thus facilitating and reducing the cost of ecological monitoring and environmental sustainability planning tasks.

Kokoelmat
  • Avoin saatavuus [38840]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen