Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Violence detection from ECG signals : a preliminary study

Ferdinando, Hany; Ye, Liang; Han, Tian; Zhang, Zhu; Sun, Guobing; Huuki, Tuija; Seppänen, Tapio; Alasaarela, Esko (2017-11-01)

 
Avaa tiedosto
nbnfi-fe202001101786.pdf (4.302Mt)
nbnfi-fe202001101786_meta.xml (43.26Kt)
nbnfi-fe202001101786_solr.xml (35.23Kt)
Lataukset: 

URL:
https://doi.org/10.13176/11.790

Ferdinando, Hany
Ye, Liang
Han, Tian
Zhang, Zhu
Sun, Guobing
Huuki, Tuija
Seppänen, Tapio
Alasaarela, Esko
Journal of Pattern Recognition Research
01.11.2017

Ferdinando, Hany; Ye, Liang; Han, Tian; Zhang, Zhu; Sun, Guobing; Huuki, Tuija; Seppänen, Tapio; Alasaarela, Esko (2017) Violence detection from ECG signals : a preliminary study. Journal of Pattern Recognition and Research Vol 12, No 1 (2017); https://doi.org/10.13176/11.790

https://rightsstatements.org/vocab/InC/1.0/
2017 JPRR. All rights reserved. Permissions to make digital or hard copies of all or part of this work for personal or classroom use may be granted by JPRR provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, or to republish, requires a fee and/or special permission from JPRR. Available open aceess at: https://doi.org/10.13176/11.790.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.13176/11.790
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe202001101786
Tiivistelmä

Abstract

This research studied violence detection from less than 6-second ECG signals. Features were calculated based on the Bivariate Empirical Mode Decomposition (BEMD) and the Recurrence Quantification Analysis (RQA) applied to ECG signals from violence simulation in a primary school, involving 12 pupils from two grades. The feature sets were fed to a kNN classifier and tested using 10-fold cross validation and leave-one-subject-out (LOSO) validation in subject-dependent and subject-independent training models respectively. Features from BEMD outperformed the ones from RQA in both 10-fold cross validation, i.e. 88% vs. 73% (2nd grade pupils) and 87% vs. 81% (5th grade pupils), and LOSO validation, i.e. 77% vs. 75% (2nd grade pupils) and 80% vs. 76% (5th grade pupils), but have larger variation than the ones from RQA in both validations. Average performances for subject-specific system in 10-fold cross validation were 100% vs. 93% (2nd grade pupils) and 100% vs. 97% (5th grade pupils) for features from the BEMD and the RQA respectively. The results indicate that ECG signals as short as 6 seconds can be used successfully to detect violent events using subject-specific classifiers.

Kokoelmat
  • Avoin saatavuus [38865]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen