Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

User preference learning-based edge caching for fog radio access network

Jiang, Yanxiang; Ma, Miaoli; Bennis, Mehdi; Zheng, Fu-Chun; You, Xiaohu (2018-11-12)

 
Avaa tiedosto
nbnfi-fe202003117807.pdf (2.206Mt)
nbnfi-fe202003117807_meta.xml (36.40Kt)
nbnfi-fe202003117807_solr.xml (38.85Kt)
Lataukset: 

URL:
https://doi.org/10.1109/TCOMM.2018.2880482

Jiang, Yanxiang
Ma, Miaoli
Bennis, Mehdi
Zheng, Fu-Chun
You, Xiaohu
Institute of Electrical and Electronics Engineers
12.11.2018

Y. Jiang, M. Ma, M. Bennis, F. Zheng and X. You, "User Preference Learning-Based Edge Caching for Fog Radio Access Network," in IEEE Transactions on Communications, vol. 67, no. 2, pp. 1268-1283, Feb. 2019. doi: 10.1109/TCOMM.2018.2880482

https://rightsstatements.org/vocab/InC/1.0/
© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/TCOMM.2018.2880482
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe202003117807
Tiivistelmä

Abstract

In this paper, the edge caching problem in fog radio access network (F-RAN) is investigated. By maximizing the overall cache hit rate, the edge caching optimization problem is formulated to find the optimal policy. Content popularity in terms of time and space is considered from the perspective of regional users. We propose an online content popularity prediction algorithm by leveraging the content features and user preferences, and an offline user preference learning algorithm by using the online gradient descent (OGD) method and the follow the (proximally) regularized leader (FTRL-Proximal) method. Our proposed edge caching policy not only can promptly predict the future content popularity in an online fashion with low complexity, but also can track the content popularity with spatial and temporal popularity dynamic in time without delay. Furthermore, we design two learning-based edge caching architectures. Moreover, we theoretically derive the upper bound of the popularity prediction error, the lower bound of the cache hit rate, and the regret bound of the overall cache hit rate of our proposed edge caching policy. Simulation results show that the overall cache hit rate of our proposed policy is superior to those of the traditional policies and asymptotically approaches the optimal performance.

Kokoelmat
  • Avoin saatavuus [38841]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen