Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Compressive sensed video recovery via iterative thresholding with random transforms

Belyaev, Evgeny; Codreanu, Marian; Juntti, Markku; Egiazarian, Karen (2020-04-30)

 
Avaa tiedosto
nbnfi-fe2020111390097.pdf (6.257Mt)
nbnfi-fe2020111390097_meta.xml (32.57Kt)
nbnfi-fe2020111390097_solr.xml (33.19Kt)
Lataukset: 

URL:
https://doi.org/10.1049/iet-ipr.2019.0661

Belyaev, Evgeny
Codreanu, Marian
Juntti, Markku
Egiazarian, Karen
Institution of Engineering and Technology
30.04.2020

E. Belyaev, M. Codreanu, M. Juntti and K. Egiazarian, "Compressive sensed video recovery via iterative thresholding with random transforms," in IET Image Processing, vol. 14, no. 6, pp. 1187-1199, 11 5 2020, doi: 10.1049/iet-ipr.2019.0661

https://rightsstatements.org/vocab/InC/1.0/
© The Institution of Engineering and Technology 2020. The Definitive Version of Record can be found online at: https://doi.org/10.1049/iet-ipr.2019.0661.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1049/iet-ipr.2019.0661
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe2020111390097
Tiivistelmä

Abstract

The authors consider the problem of compressive sensed video recovery via iterative thresholding algorithm. Traditionally, it is assumed that some fixed sparsifying transform is applied at each iteration of the algorithm. In order to improve the recovery performance, at each iteration the thresholding could be applied for different transforms in order to obtain several estimates for each pixel. Then the resulting pixel value is computed based on obtained estimates using simple averaging. However, calculation of the estimates leads to significant increase in reconstruction complexity. Therefore, the authors propose a heuristic approach, where at each iteration only one transform is randomly selected from some set of transforms. First, they present simple examples, when block-based 2D discrete cosine transform is used as the sparsifying transform, and show that the random selection of the block size at each iteration significantly outperforms the case when fixed block size is used. Second, building on these simple examples, they apply the proposed approach when video block-matching and 3D filtering (VBM3D) is used for the thresholding and show that the random transform selection within VBM3D allows to improve the recovery performance as compared with the recovery based on VBM3D with fixed transform.

Kokoelmat
  • Avoin saatavuus [38358]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen