Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

A multi-sensor school violence detecting method based on improved relief-F and D-S algorithms

Ye, Liang; Shi, Jifu; Ferdinando, Hany; Seppänen, Tapio; Alasaarela, Esko (2020-07-14)

 
Avaa tiedosto
nbnfi-fe2020112392294.pdf (715.0Kt)
nbnfi-fe2020112392294_meta.xml (39.13Kt)
nbnfi-fe2020112392294_solr.xml (40.92Kt)
Lataukset: 

URL:
https://doi.org/10.1007/s11036-020-01575-7

Ye, Liang
Shi, Jifu
Ferdinando, Hany
Seppänen, Tapio
Alasaarela, Esko
Springer Nature
14.07.2020

Ye, L., Shi, J., Ferdinando, H. et al. A Multi-sensor School Violence Detecting Method Based on Improved Relief-F and D-S Algorithms. Mobile Netw Appl 25, 1655–1662 (2020). https://doi.org/10.1007/s11036-020-01575-7

https://rightsstatements.org/vocab/InC/1.0/
© Springer Science+Business Media, LLC, part of Springer Nature 2020. This is a post-peer-review, pre-copyedit version of an article published in Mobile networks and applications. The final authenticated version is available online at: https://doi.org/10.1007/s11036-020-01575-7.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1007/s11036-020-01575-7
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe2020112392294
Tiivistelmä

Abstract

School bullying is a common social problem, and school violence is considered to be the most harmful form of school bullying. Fortunately, with the development of movement sensors and pattern recognition techniques, it is possible to detect school violence with artificial intelligence. This paper proposes a school violence detecting method based on improved Relief-F and Dempster-Shafe (D-S) algorithms. Two movement sensors are fixed on the object’s waist and leg, respectively, to gather acceleration and gyro data. Altogether nine kinds of activities are gathered, including three kinds of school violence and six kinds of daily-life activities. After wavelet filtering, 39 time-domain features and 12 frequency-domain features are extracted. To reduce computational cost, this paper proposes an improved Relief-F algorithm which selects features according to classification contribution and correlation. By drawing boxplots of the selected features, the authors find that the frequency-domain energy of the y-axis of acceleration can distinguish jumping from other activities. Therefore, the authors build a two-layer classifier. The first layer is a decision tree which separates jumping from other activities, and the second layer is a Radial Basis Function (RBF) neutral network which classifies the remainder eight kinds of activities. Since the two movement sensors work independently, this paper proposes an improved D-S algorithm for decision layer fusion. The improved D-S algorithm designs a new probability distribution function on the evidence model and builds a new fusion rule, which solves the problem of fusion collision. According to the simulation results, the proposed method has increased the recognition accuracy compared with the authors’ previous work. 89.6% of school violence and 95.1% of daily-life activities were correctly recognized. The accuracy reached 93.6% and the precision reached 87.8%, which were 29.9% and 2.7% higher than the authors’ previous work, respectively.

Kokoelmat
  • Avoin saatavuus [38840]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen