Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Signal recovery in compressive sensing via multiple sparsifying bases

Wijewardhana, U. L.; Belyaev, E.; Codreanu, M.; Latva-aho, M. (2017-05-11)

 
Avaa tiedosto
nbnfi-fe202003208625.pdf (306.4Kt)
nbnfi-fe202003208625_meta.xml (42.86Kt)
nbnfi-fe202003208625_solr.xml (32.17Kt)
Lataukset: 

URL:
https://doi.org/10.1109/DCC.2017.37

Wijewardhana, U. L.
Belyaev, E.
Codreanu, M.
Latva-aho, M.
IEEE Computer Society Press
11.05.2017

U. L. Wijewardhana, E. Belyaev, M. Codreanu and M. Latva-Aho, "Signal Recovery in Compressive Sensing via Multiple Sparsifying Bases," 2017 Data Compression Conference (DCC), Snowbird, UT, 2017, pp. 141-150. doi: 10.1109/DCC.2017.37

https://rightsstatements.org/vocab/InC/1.0/
© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/DCC.2017.37
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe202003208625
Tiivistelmä

Abstract

Compressive sensing theory asserts that, under certain conditions, a high dimensional but compressible signal can be recovered from a small number of random linear projections by utilizing computationally efficient algorithms. The a priori knowledge of the basis in which the signal of interest is sparse is the key assumption utilized by such algorithms. However, the basis in which the signal is the sparsest is unknown for many natural signals of interest. Instead there may exist multiple bases which lead to a compressible representation of the signal: e.g., an image is compressible in different wavelet transforms. We show that a significant performance improvement can be achieved by utilizing multiple estimates of the signal using sparsifying bases in the context of signal reconstruction from compressive samples. Further, we derive a customized interior-point method to jointly obtain multiple estimates of a 2-D signal (image) from compressive measurements utilizing multiple sparsifying bases as well as the fact that the images usually have a sparse gradient.

Kokoelmat
  • Avoin saatavuus [38840]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen