Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Face anti-spoofing using hybrid residual learning framework

Muhammad, Usman; Hadid, Abdenour (2020-02-10)

 
Avaa tiedosto
nbnfi-fe2020062445590.pdf (409.0Kt)
nbnfi-fe2020062445590_meta.xml (28.79Kt)
nbnfi-fe2020062445590_solr.xml (31.64Kt)
Lataukset: 

URL:
https://doi.org/10.1109/ICB45273.2019.8987283

Muhammad, Usman
Hadid, Abdenour
Institute of Electrical and Electronics Engineers
10.02.2020

U. Muhammad and A. Hadid, "Face Anti-spoofing using Hybrid Residual Learning Framework," 2019 International Conference on Biometrics (ICB), Crete, Greece, 2019, pp. 1-7, doi: 10.1109/ICB45273.2019.8987283

https://rightsstatements.org/vocab/InC/1.0/
© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/ICB45273.2019.8987283
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe2020062445590
Tiivistelmä

Abstract

Face spoofing attacks have received significant attention because of criminals who are developing different techniques such as warped photos, cut photos, 3D masks, etc. to easily fool the face recognition systems. In order to improve the security measures of biometric systems, deep learning models offer powerful solutions; but to attain the benefits of multilayer features remains a significant challenge. To alleviate this limitation, this paper presents a hybrid framework to build the feature representation by fusing ResNet with more discriminative power. First, two variants of the residual learning framework are selected as deep feature extractors to extract informative features. Second, the fullyconnected layers are used as separated feature descriptors. Third, PCA based Canonical correlation analysis (CCA) is proposed as a feature fusion strategy to combine relevant information and to improve the features’ discrimination capacity. Finally, the support vector machine (SVM) is used to construct the final representation of facial features. Experimental results show that our proposed framework achieves a state-of-the-art performance without finetuning, data augmentation or coding strategy on benchmark databases, namely the MSU mobile face spoof database and the CASIA face anti-spoofing database.

Kokoelmat
  • Avoin saatavuus [38404]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen