Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

IOS crowd–sensing won’t hurt a bit! : AWARE framework and sustainable study guideline for iOS platform

Nishiyama, Yuuki; Ferreira, Denzil; Eigen, Yusaku; Sasaki, Wataru; Okoshi, Tadashi; Nakazawa, Jin; Dey, Anind K.; Sezaki, Kaoru (2020-07-10)

 
Avaa tiedosto
nbnfi-fe2020112392284.pdf (1.248Mt)
nbnfi-fe2020112392284_meta.xml (46.59Kt)
nbnfi-fe2020112392284_solr.xml (36.52Kt)
Lataukset: 

URL:
https://doi.org/10.1007/978-3-030-50344-4_17

Nishiyama, Yuuki
Ferreira, Denzil
Eigen, Yusaku
Sasaki, Wataru
Okoshi, Tadashi
Nakazawa, Jin
Dey, Anind K.
Sezaki, Kaoru
Springer Nature
10.07.2020

Nishiyama Y. et al. (2020) IOS Crowd–Sensing Won’t Hurt a Bit!: AWARE Framework and Sustainable Study Guideline for iOS Platform. In: Streitz N., Konomi S. (eds) Distributed, Ambient and Pervasive Interactions. HCII 2020. Lecture Notes in Computer Science, vol 12203. Springer, Cham. https://doi.org/10.1007/978-3-030-50344-4_17

https://rightsstatements.org/vocab/InC/1.0/
© Springer Nature Switzerland AG 2020. This is a post-peer-review, pre-copyedit version of an article published in Distributed, Ambient and Pervasive Interactions : 8th International Conference, DAPI 2020, Held as Part of the 22nd HCI International Conference, HCII 2020, Copenhagen, Denmark, July 19–24, 2020, Proceedings. The final authenticated version is available online at: https://doi.org/10.1007/978-3-030-50344-4_17.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1007/978-3-030-50344-4_17
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe2020112392284
Tiivistelmä

Abstract

The latest smartphones have advanced sensors that allow us to recognize human and environmental contexts. They operate primarily on Android and iOS, and can be used as sensing platforms for research in various fields owing to their ubiquity in society. Mobile sensing frameworks help to manage these sensors easily. However, Android and iOS are constructed following different policies, requiring developers and researchers to consider framework differences during research planning, application development, and data collection phases to ensure sustainable data collection. In particular, iOS imposes strict regulations on background data collection and application distribution. In this study, we design, implement, and evaluate a mobile sensing framework for iOS, namely AWARE-iOS, which is an iOS version of the AWARE Framework. Our performance evaluations and case studies measured over a duration of 288 h on four types of devices, show the risks of continuous data collection in the background and explore optimal practical sensor settings for improved data collection. Based on these results, we develop guidelines for sustainable data collection on iOS.

Kokoelmat
  • Avoin saatavuus [38865]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen