Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Online non-cooperative radar emitter classification from evolving and imbalanced pulse streams

Sui, Jingping; Liu, Zhen; Liu, Li; Peng, Bo; Liu, Tianpeng; Li, Xiang (2020-03-19)

 
Avaa tiedosto
nbnfi-fe2020081354627.pdf (1.637Mt)
nbnfi-fe2020081354627_meta.xml (38.70Kt)
nbnfi-fe2020081354627_solr.xml (40.27Kt)
Lataukset: 

URL:
https://doi.org/10.1109/JSEN.2020.2981976

Sui, Jingping
Liu, Zhen
Liu, Li
Peng, Bo
Liu, Tianpeng
Li, Xiang
Institute of Electrical and Electronics Engineers
19.03.2020

J. Sui, Z. Liu, L. Liu, B. Peng, T. Liu and X. Li, "Online Non-Cooperative Radar Emitter Classification From Evolving and Imbalanced Pulse Streams," in IEEE Sensors Journal, vol. 20, no. 14, pp. 7721-7730, 15 July15, 2020, doi: 10.1109/JSEN.2020.2981976

https://rightsstatements.org/vocab/InC/1.0/
© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/JSEN.2020.2981976
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe2020081354627
Tiivistelmä

Abstract

Recent research treats radar emitter classification (REC) problems as typical closed-set classification problems, i.e., assuming all radar emitters are cooperative and their pulses can be pre-obtained for training the classifiers. However, such overly ideal assumptions have made it difficult to fit real-world REC problems into such restricted models. In this paper, to achieve online REC in a more realistic way, we convert the online REC problem into dynamically performing subspace clustering on pulse streams. Meanwhile, the pulse streams have evolving and imbalanced properties which are mainly caused by the existence of the non-cooperative emitters. Specifically, a novel data stream clustering (DSC) algorithm, called dynamic improved exemplar-based subspace clustering (DI-ESC), is proposed, which consists of two phases, i.e., initialization and online clustering. First, to achieve subspace clustering on subspace-imbalanced data, a static clustering approach called the improved ESC algorithm (I-ESC) is proposed. Second, based on the subspace clustering results obtained, DI-ESC can process the pulse stream in real-time and can further detect the emitter evolution by the proposed evolution detection strategy. The typically dynamic behavior of emitters such as appearing, disappearing and recurring can be detected and adapted by the DI-ESC. Extinct experiments on real-world emitter data show the sensitivity, effectiveness, and superiority of the proposed I-ESC and DI-ESC algorithms.

Kokoelmat
  • Avoin saatavuus [38840]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen