Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

AI-driven zero touch network and service management in 5G and beyond : challenges and research directions

Benzaïd, Chafika; Taleb, Tarik (2020-02-12)

 
Avaa tiedosto
nbnfi-fe2020110288926.pdf (786.0Kt)
nbnfi-fe2020110288926_meta.xml (25.82Kt)
nbnfi-fe2020110288926_solr.xml (27.09Kt)
Lataukset: 

URL:
https://doi.org/10.1109/MNET.001.1900252

Benzaïd, Chafika
Taleb, Tarik
Institute of Electrical and Electronics Engineers
12.02.2020

C. Benzaid and T. Taleb, "AI-Driven Zero Touch Network and Service Management in 5G and Beyond: Challenges and Research Directions," in IEEE Network, vol. 34, no. 2, pp. 186-194, March/April 2020, doi: 10.1109/MNET.001.1900252

https://rightsstatements.org/vocab/InC/1.0/
© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/MNET.001.1900252
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe2020110288926
Tiivistelmä

Abstract

The foreseen complexity in operating and managing 5G and beyond networks has propelled the trend toward closed-loop automation of network and service management operations. To this end, the ETSI Zero-touch network and Service Management (ZSM) framework is envisaged as a next-generation management system that aims to have all operational processes and tasks executed automatically, ideally with 100 percent automation. Artificial Intelligence (AI) is envisioned as a key enabler of self-managing capabilities, resulting in lower operational costs, accelerated time-tovalue and reduced risk of human error. Nevertheless, the growing enthusiasm for leveraging AI in a ZSM system should not overlook the potential limitations and risks of using AI techniques. The current paper aims to introduce the ZSM concept and point out the AI-based limitations and risks that need to be addressed in order to make ZSM a reality.

Kokoelmat
  • Avoin saatavuus [38841]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen