Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Communication-efficient multimodal split learning for mmWave received power prediction

Koda, Yusuke; Park, Jihong; Bennis, Mehdi; Nishio, Takayuki; Yamamoto, Koji; Morikura, Masahiro; Nakashima, Kota (2020-03-06)

 
Avaa tiedosto
nbnfi-fe2020081460413.pdf (2.955Mt)
nbnfi-fe2020081460413_meta.xml (41.50Kt)
nbnfi-fe2020081460413_solr.xml (34.45Kt)
Lataukset: 

URL:
https://doi.org/10.1109/LCOMM.2020.2978824

Koda, Yusuke
Park, Jihong
Bennis, Mehdi
Nishio, Takayuki
Yamamoto, Koji
Morikura, Masahiro
Nakashima, Kota
Institute of Electrical and Electronics Engineers
06.03.2020

Y. Koda et al., "Communication-Efficient Multimodal Split Learning for mmWave Received Power Prediction," in IEEE Communications Letters, vol. 24, no. 6, pp. 1284-1288, June 2020, doi: 10.1109/LCOMM.2020.2978824

https://rightsstatements.org/vocab/InC/1.0/
© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/LCOMM.2020.2978824
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe2020081460413
Tiivistelmä

Abstract

The goal of this study is to improve the accuracy of millimeter wave received power prediction by utilizing camera images and radio frequency (RF) signals, while gathering image inputs in a communication-efficient and privacy-preserving manner. To this end, we propose a distributed multimodal machine learning (ML) framework, coined multimodal split learning (MultSL), in which a large neural network (NN) is split into two wirelessly connected segments. The upper segment combines images and received powers for future received power prediction, whereas the lower segment extracts features from camera images and compresses its output to reduce communication costs and privacy leakage. Experimental evaluation corroborates that MultSL achieves higher accuracy than the baselines utilizing either images or RF signals. Remarkably, without compromising accuracy, compressing the lower segment output by 16× yields 16× lower communication latency and 2.8% less privacy leakage compared to the case without compression.

Kokoelmat
  • Avoin saatavuus [38865]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen