Suitability of commercial superplasticizers for one-part alkali-activated blast-furnace slag mortar
Luukkonen, Tero; Abdollahnejad, Zahra; Ohenoja, Katja; Kinnunen, Päivö; Illikainen, Mirja (2019-06-13)
Tero Luukkonen, Zahra Abdollahnejad, Katja Ohenoja, Paivo Kinnunen & Mirja Illikainen (2019) Suitability of commercial superplasticizers for one-part alkali-activated blast-furnace slag mortar, Journal of Sustainable Cement-Based Materials, 8:4, 244-257, DOI: 10.1080/21650373.2019.1625827
© 2019 Informa UK Limited, trading as Taylor & Francis Group. This is an Accepted Manuscript of an article published by Taylor & Francis in Journal of Sustainable Cement-Based Materials on 13 Jun 2019, available online: https://doi.org/10.1080/21650373.2019.1625827.
https://rightsstatements.org/vocab/InC/1.0/
https://urn.fi/URN:NBN:fi-fe2019062521869
Tiivistelmä
Abstract
Alkali-activated materials are a low-CO₂ alternative for Portland cement in construction. However, one major issue in their use is the poor or varying functionality of the currently available commercial superplasticizers. Especially for one-part (‘just add water’) alkali-activated materials, the number of studies is limited. In this study, one-part alkali-activated mortar was prepared from blast furnace slag by using solid sodium hydroxide as an activator and microsilica as an additional silica source. Comparison of commonly used superplasticizer types revealed that lignosulfonate, melamine, and naphthalene-based superplasticizers are more efficient than the currently most used polyacrylate and polycarboxylate-superplasticizers. Lignosulfonate-based superplasticizer was overall best-performing: it improved significantly the workability (+41% spread, −51% yield stress, −27% viscosity), setting time (+70%), and compressive strength (+19%) at a 0.5 wt% dose. When the amount of water and superplasticizer were optimized, compressive strength of mortar could be doubled (from 19 to 40 MPa at 28 d).
Kokoelmat
- Avoin saatavuus [34164]