Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Depression detection based on deep distribution learning

de Melo, Wheidima Carneiro; Granger, Eric; Hadid, Abdenour (2019-08-26)

 
Avaa tiedosto
nbnfi-fe202002185698.pdf (3.326Mt)
nbnfi-fe202002185698_meta.xml (31.92Kt)
nbnfi-fe202002185698_solr.xml (33.93Kt)
Lataukset: 

URL:
https://doi.org/10.1109/ICIP.2019.8803467

de Melo, Wheidima Carneiro
Granger, Eric
Hadid, Abdenour
Institute of Electrical and Electronics Engineers
26.08.2019

W. C. de Melo, E. Granger and A. Hadid, "Depression Detection Based on Deep Distribution Learning," 2019 IEEE International Conference on Image Processing (ICIP), Taipei, Taiwan, 2019, pp. 4544-4548. doi: 10.1109/ICIP.2019.8803467

https://rightsstatements.org/vocab/InC/1.0/
© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/ICIP.2019.8803467
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe202002185698
Tiivistelmä

Abstract

Major depressive disorder is among the most common and harmful mental health problems. Several deep learning architectures have been proposed for video-based detection of depression based on the facial expressions of subjects. To predict the depression level, these architectures are often modeled for regression with Euclidean loss. Consequently, they do not leverage the data distribution, nor explore the ordinal relationship between facial images and depression levels, and have limited robustness to noisy and uncertain labeling. This paper introduces a deep learning architecture for accurately predicting depression levels through distribution learning. It relies on a new expectation loss function that allows to estimate the underlying data distribution over depression levels, where expected values of the distribution are optimized to approach the ground-truth levels. The proposed approach can produce accurate predictions of depression levels even under label uncertainty. Extensive experiments on the AVEC2013 and AVEC2014 datasets indicate that the proposed architecture represents an effective approach that can outperform state-of-the-art techniques.

Kokoelmat
  • Avoin saatavuus [38618]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen