Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Deep analysis of facial behavioral dynamics

Zafeiriou, Lazaros; Zafeiriou, Stefanos; Pantic, Maja (2017-08-24)

 
Avaa tiedosto
nbnfi-fe202003057309.pdf (2.478Mt)
nbnfi-fe202003057309_meta.xml (29.85Kt)
nbnfi-fe202003057309_solr.xml (30.59Kt)
Lataukset: 

URL:
https://doi.org/10.1109/CVPRW.2017.249

Zafeiriou, Lazaros
Zafeiriou, Stefanos
Pantic, Maja
Institute of Electrical and Electronics Engineers
24.08.2017

L. Zafeiriou, S. Zafeiriou and M. Pantic, "Deep Analysis of Facial Behavioral Dynamics," 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Honolulu, HI, 2017, pp. 1988-1996. doi: 10.1109/CVPRW.2017.249

https://rightsstatements.org/vocab/InC/1.0/
© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/CVPRW.2017.249
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe202003057309
Tiivistelmä

Abstract

Modelling of facial dynamics, as well as recovering of latent dimensions that correspond to facial dynamics is of paramount importance for many tasks relevant to facial behaviour analysis. Currently, analysis of facial dynamics is performed by applying linear techniques, mainly, on sparse facial tracks. In this, paper we propose the first, to the best of our knowledge, methodology for extracting low-dimensional latent dimensions that correspond to facial dynamics (i.e., motion of facial parts). To this end we develop appropriate unsupervised and supervised deep autoencoder architectures, which are able to extract features that correspond to the facial dynamics. We demonstrate the usefulness of the proposed approach in various facial behaviour datasets.

Kokoelmat
  • Avoin saatavuus [37559]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen