Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Self-learning scene-specific pedestrian detectors using a progressive latent model

Ye, Qixiang; Zhang, Tianliang; Ke, Wei; Qiu, Qiang; Chen, Jie; Sapiro, Guillermo; Zhang, Baochang (2017-11-09)

 
Avaa tiedosto
nbnfi-fe202003238859.pdf (1.323Mt)
nbnfi-fe202003238859_meta.xml (40.97Kt)
nbnfi-fe202003238859_solr.xml (35.16Kt)
Lataukset: 

URL:
https://doi.org/10.1109/CVPR.2017.222

Ye, Qixiang
Zhang, Tianliang
Ke, Wei
Qiu, Qiang
Chen, Jie
Sapiro, Guillermo
Zhang, Baochang
Institute of Electrical and Electronics Engineers
09.11.2017

Q. Ye et al., "Self-Learning Scene-Specific Pedestrian Detectors Using a Progressive Latent Model," 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, 2017, pp. 2057-2066. doi: 10.1109/CVPR.2017.222

https://rightsstatements.org/vocab/InC/1.0/
© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/CVPR.2017.222
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe202003238859
Tiivistelmä

Abstract

In this paper, a self-learning approach is proposed towards solving scene-specific pedestrian detection problem without any human annotation involved. The self-learning approach is deployed as progressive steps of object discovery, object enforcement, and label propagation. In the learning procedure, object locations in each frame are treated as latent variables that are solved with a progressive latent model (PLM). Compared with conventional latent models, the proposed PLM incorporates a spatial regularization term to reduce ambiguities in object proposals and to enforce object localization, and also a graph-based label propagation to discover harder instances in adjacent frames. With the difference of convex (DC) objective functions, PLM can be efficiently optimized with a concave-convex programming and thus guaranteeing the stability of self-learning. Extensive experiments demonstrate that even without annotation the proposed self-learning approach outperforms weakly supervised learning approaches, while achieving comparable performance with transfer learning and fully supervised approaches.

Kokoelmat
  • Avoin saatavuus [38618]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen