Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Age-aware status update control for energy harvesting IoT sensors via reinforcement learning

Hatami, Mohammad; Jahandideh, Mojtaba; Leinonen, Markus; Codreanu, Marian (2020-10-08)

 
Avaa tiedosto
nbnfi-fe2020111992015.pdf (716.1Kt)
nbnfi-fe2020111992015_meta.xml (35.38Kt)
nbnfi-fe2020111992015_solr.xml (32.61Kt)
Lataukset: 

URL:
https://doi.org/10.1109/PIMRC48278.2020.9217302

Hatami, Mohammad
Jahandideh, Mojtaba
Leinonen, Markus
Codreanu, Marian
Institute of Electrical and Electronics Engineers
08.10.2020

M. Hatami, M. Jahandideh, M. Leinonen and M. Codreanu, "Age-Aware Status Update Control for Energy Harvesting IoT Sensors via Reinforcement Learning," 2020 IEEE 31st Annual International Symposium on Personal, Indoor and Mobile Radio Communications, London, United Kingdom, 2020, pp. 1-6, doi: 10.1109/PIMRC48278.2020.9217302

https://rightsstatements.org/vocab/InC/1.0/
© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/PIMRC48278.2020.9217302
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe2020111992015
Tiivistelmä

Abstract

We consider an IoT sensing network with multiple users, multiple energy harvesting sensors, and a wireless edge node acting as a gateway between the users and sensors. The users request for updates about the value of physical processes, each of which is measured by one sensor. The edge node has a cache storage that stores the most recently received measurements from each sensor. Upon receiving a request, the edge node can either command the corresponding sensor to send a status update, or use the data in the cache. We aim to find the best action of the edge node to minimize the average long-term cost which trade-offs between the age of information and energy consumption. We propose a practical reinforcement learning approach that finds an optimal policy without knowing the exact battery levels of the sensors. Simulation results show that the proposed method significantly reduces the average cost compared to several baseline methods.

Kokoelmat
  • Avoin saatavuus [38841]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen