Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Auto-Fas : searching lightweight networks for face anti-spoofing

Yu, Zitong; Qin, Yunxiao; Xu, Xiaqing; Zhao, Chenxu; Wang, Zezheng; Lei, Zhen; Zhao, Guoying (2020-05-14)

 
Avaa tiedosto
nbnfi-fe2020112092121.pdf (1.964Mt)
nbnfi-fe2020112092121_meta.xml (42.00Kt)
nbnfi-fe2020112092121_solr.xml (35.17Kt)
Lataukset: 

URL:
https://doi.org/10.1109/ICASSP40776.2020.9053587

Yu, Zitong
Qin, Yunxiao
Xu, Xiaqing
Zhao, Chenxu
Wang, Zezheng
Lei, Zhen
Zhao, Guoying
Institute of Electrical and Electronics Engineers
14.05.2020

Z. Yu et al., "Auto-Fas: Searching Lightweight Networks for Face Anti-Spoofing," ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Barcelona, Spain, 2020, pp. 996-1000, doi: 10.1109/ICASSP40776.2020.9053587

https://rightsstatements.org/vocab/InC/1.0/
© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/ICASSP40776.2020.9053587
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe2020112092121
Tiivistelmä

Abstract

With the development of mobile devices, it is hopeful and pressing to deploy face recognition and face anti-spoofing (FAS) model on cell phone or portable devices. Most of existing face anti-spoofing methods focus on building computational costly detector for better spoofing face detection performance. However, these detectors are unfriendly to be deployed on the mobile device for real-time FAS applications. In this paper, we propose a neural architecture search (NAS) based method called Auto-FAS, intending to discover well-suitable lightweight networks for mobile-level face anti-spoofing. In Auto-FAS, a special search space is designed to restrict the model’s size, and pixel-wise binary supervision is used to improve the model’s performance. We demonstrate both the effectiveness and efficiency of the proposed approach on three public benchmark datasets, which shows the potential real-time FAS application for mobile devices.

Kokoelmat
  • Avoin saatavuus [37957]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen