Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Prevalence, contents and automatic detection of KL-SATD

Rantala, Leevi; Mäntylä, Mika; Lo, David (2020-10-16)

 
Avaa tiedosto
nbnfi-fe2020120198835.pdf (147.0Kt)
nbnfi-fe2020120198835_meta.xml (31.38Kt)
nbnfi-fe2020120198835_solr.xml (28.68Kt)
Lataukset: 

URL:
https://doi.org/10.1109/SEAA51224.2020.00069

Rantala, Leevi
Mäntylä, Mika
Lo, David
Institute of Electrical and Electronics Engineers
16.10.2020

L. Rantala, M. Mäntylä and D. Lo, "Prevalence, Contents and Automatic Detection of KL-SATD," 2020 46th Euromicro Conference on Software Engineering and Advanced Applications (SEAA), Portoroz, Slovenia, 2020, pp. 385-388, doi: 10.1109/SEAA51224.2020.00069

https://rightsstatements.org/vocab/InC/1.0/
© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/SEAA51224.2020.00069
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe2020120198835
Tiivistelmä

Abstract

When developers use different keywords such as TODO and FIXME in source code comments to describe self-admitted technical debt (SATD), we refer it as Keyword-Labeled SATD (KL-SATD). We study KL-SATD from 33 software repositories with 13,588 KL-SATD comments. We find that the median percentage of KL-SATD comments among all comments is only 1,52%. We find that KL-SATD comment contents include words expressing code changes and uncertainty, such as remove, fix, maybe and probably. This makes them different compared to other comments. KL-SATD comment contents are similar to manually labeled SATD comments of prior work. Our machine learning classifier using logistic Lasso regression has good performance in detecting KL-SATD comments (AUC-ROC 0.88). Finally, we demonstrate that using machine learning we can identify comments that are currently missing but which should have a SATD keyword in them. Automating SATD identification of comments that lack SATD keywords can save time and effort by replacing manual identification of comments. Using KL-SATD offers a potential to bootstrap a complete SATD detector.

Kokoelmat
  • Avoin saatavuus [37606]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen