Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Decision triggered data transmission and collection in industrial Internet of Things

He, Jiguang; Kong, Long; Frondelius, Tero; Silvén, Olli; Juntti, Markku (2020-06-19)

 
Avaa tiedosto
nbnfi-fe2020081248373.pdf (415.9Kt)
nbnfi-fe2020081248373_meta.xml (38.93Kt)
nbnfi-fe2020081248373_solr.xml (39.57Kt)
Lataukset: 

URL:
https://doi.org/10.1109/WCNC45663.2020.9120749

He, Jiguang
Kong, Long
Frondelius, Tero
Silvén, Olli
Juntti, Markku
Institute of Electrical and Electronics Engineers
19.06.2020

J. He, L. Kong, T. Frondelius, O. Silvén and M. Juntti, "Decision Triggered Data Transmission and Collection in Industrial Internet of Things," 2020 IEEE Wireless Communications and Networking Conference (WCNC), Seoul, Korea (South), 2020, pp. 1-5, doi: 10.1109/WCNC45663.2020.9120749

https://rightsstatements.org/vocab/InC/1.0/
© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/WCNC45663.2020.9120749
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe2020081248373
Tiivistelmä

Abstract

We propose a decision triggered data transmission and collection (DTDTC) protocol for condition monitoring and anomaly detection in the industrial Internet of things (IIoT). In the IIoT, the collection, processing, encoding, and transmission of the sensor readings are usually not for the reconstruction of the original data but for decision making at the fusion center. By moving the decision making process to the local end devices, the amount of data transmission can be significantly reduced, especially when normal signals with positive decisions dominate in the whole life cycle and the fusion center is only interested in collecting the abnormal data. The proposed concept combines compressive sensing, machine learning, data transmission, and joint decision making. The sensor readings are encoded and transmitted to the fusion center only when abnormal signals with negative decisions are detected. All the abnormal signals from the end devices are gathered at the fusion center for a joint decision with feedback messages forwarded to the local actuators. The advantage of such an approach lies in that it can significantly reduce the volume of data to be transmitted through wireless links. Moreover, the introduction of compressive sensing can further reduce the dimension of data tremendously. An exemplary case, i.e., diesel engine condition monitoring, is provided to validate the effectiveness and efficiency of the proposed scheme compared to the conventional ones.

Kokoelmat
  • Avoin saatavuus [37837]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen