Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Drone detection experiment based on image processing and machine learning

Pham, Giao N.; Nguyen, Phong H. (2020-02-29)

 
Avaa tiedosto
nbnfi-fe2020062245143.pdf (1.022Mt)
nbnfi-fe2020062245143_meta.xml (28.37Kt)
nbnfi-fe2020062245143_solr.xml (27.63Kt)
Lataukset: 

URL:
http://www.ijstr.org/research-paper-publishing.php?month=feb2020

Pham, Giao N.
Nguyen, Phong H.
Amazedia Solutions
29.02.2020

Pham, G. N., Nguyen, P. H., Drone detection experiment based on image processing and machine learning, International Journal of Scientific and Technological Research, ISSN: 2277-8616, Vol. 9:2, p. 2965-2971, http://www.ijstr.org/research-paper-publishing.php?month=feb2020

https://rightsstatements.org/vocab/InC/1.0/
© International Journal of Scientific and Technological Research 2020. Published here with the kind permission by the Editor-in-Chief Dr. J. N. Swaminathan and the Publisher Amazedia Solutions, India.
https://rightsstatements.org/vocab/InC/1.0/
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe2020062245143
Tiivistelmä

Abstract

Drones are widely used in the field of information gathering and tracking, even they could be used to attacked targets. Therefore, the drone detection for the restricted areas or special zones is important and necessary. This paper focuses on the drone detection problem based on image processing for the restricted areas or special zones where used cameras for monitoring. The proposed solution detects drones from the captured images based on training the Haar-like features. The dataset of drone images is used in the Haar training process to generate a Haar-cascade model of drones. This model is then used to detect drones from images captured by the camera. The proposed solution is implemented and experimented with single cameras installed for any place including indoor environment and outdoor environment. Experimental results proved that the proposed solution could exactly detect drones for any zone or the restricted areas. The average accuracy of the proposed solution in the experimented environments is 91.9 %, and it provides an easy and economical solution for user.

Kokoelmat
  • Avoin saatavuus [37957]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen