Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Predicting Internet of Things data traffic through LSTM and autoregressive spectrum analysis

Li, Yuhong; Wang, Bailin; Su, Xiang; Riekki, Jukka; Sun, Chao; Wei, Hanyu; Wang, Hao; Han, Lei (2020-06-08)

 
Avaa tiedosto
nbnfi-fe2020110989691.pdf (1019.Kt)
nbnfi-fe2020110989691_meta.xml (45.00Kt)
nbnfi-fe2020110989691_solr.xml (37.91Kt)
Lataukset: 

URL:
https://doi.org/10.1109/NOMS47738.2020.9110357

Li, Yuhong
Wang, Bailin
Su, Xiang
Riekki, Jukka
Sun, Chao
Wei, Hanyu
Wang, Hao
Han, Lei
Institute of Electrical and Electronics Engineers
08.06.2020

Y. Li et al., "Predicting Internet of Things Data Traffic Through LSTM and Autoregressive Spectrum Analysis," NOMS 2020 - 2020 IEEE/IFIP Network Operations and Management Symposium, Budapest, Hungary, 2020, pp. 1-8, doi: 10.1109/NOMS47738.2020.9110357

https://rightsstatements.org/vocab/InC/1.0/
© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/NOMS47738.2020.9110357
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe2020110989691
Tiivistelmä

Abstract

The rapid increase of Internet of Things (IoT) applications and services has led to massive amounts of heterogeneous data. Hence, we need to re-think how IoT data influences the network. In this paper, we study the characteristics of IoT data traffic in the context of smart cities. Aiming at analyzing the influence of IoT data traffic on the access and core network, we generate various IoT data traffic according to the characteristics of different IoT applications. Based on the analysis of the inherent features of the aggregated IoT data traffic, we propose a Long Short-Term Memory (LSTM) model combined with autoregressive spectrum analysis to predict the IoT data traffic. In this model, the autoregressive spectrum analysis is used to estimate the minimum length of the historical data needed for predicting the traffic in the future, which alleviates LSTM’s performance deterioration with the increase of sequence length. A sliding window enables predicting the long–term tendency of IoT data traffic while keeping the inherent features of the data traffic. The evaluation results show that the proposed model converges quickly and can predict the variations of IoT traffic more accurately than other methods and the general LSTM model.

Kokoelmat
  • Avoin saatavuus [38697]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen