Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Privacy preserving sentiment analysis on multiple edge data streams with Apache NiFi

Pandya, Abhinay; Kostakos, Panos; Mehmood, Hassan; Cortes, Marta; Gilman, Ekaterina; Oussalah, Mourad; Pirttikangas, Susanna (2020-06-05)

 
Avaa tiedosto
nbnfi-fe2020061644570.pdf (3.714Mt)
nbnfi-fe2020061644570_meta.xml (47.72Kt)
nbnfi-fe2020061644570_solr.xml (31.75Kt)
Lataukset: 

URL:
https://doi.org/10.1109/EISIC49498.2019.9108851

Pandya, Abhinay
Kostakos, Panos
Mehmood, Hassan
Cortes, Marta
Gilman, Ekaterina
Oussalah, Mourad
Pirttikangas, Susanna
Institute of Electrical and Electronics Engineers
05.06.2020

A. Pandya et al., "Privacy preserving sentiment analysis on multiple edge data streams with Apache NiFi," 2019 European Intelligence and Security Informatics Conference (EISIC), Oulu, Finland, 2019, pp. 130-133, doi: 10.1109/EISIC49498.2019.9108851

https://rightsstatements.org/vocab/InC/1.0/
© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/EISIC49498.2019.9108851
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe2020061644570
Tiivistelmä

Abstract

Sentiment analysis, also known as opinion mining, plays a big role in both private and public sector Business Intelligence (BI); it attempts to improve public and customer experience. Nevertheless, de-identified sentiment scores from public social media posts can compromise individual privacy due to their vulnerability to record linkage attacks. Established privacy-preserving methods like k-anonymity, l-diversity and t-closeness are offline models exclusively designed for data at rest. Recently, a number of online anonymization algorithms (CASTLE, SKY, SWAF) have been proposed to complement the functional requirements of streaming applications, but without open-source implementation. In this paper, we present a reusable Apache NiFi dataflow that buffers tweets from multiple edge devices and performs anonymized sentiment analysis in real-time, using randomization. The solution can be easily adapted to suit different scenarios, enabling researchers to deploy custom anonymization algorithms.

Kokoelmat
  • Avoin saatavuus [38865]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen