Distributed edge caching via reinforcement learning in fog radio access networks
Lu, Liuyang; Jiang, Yanxiang; Bennis, Mehdi; Ding, Zhiguo; Zheng, Fu-Chun; You, Xiaohu (2019-06-27)
L. Lu, Y. Jiang, M. Bennis, Z. Ding, F. Zheng and X. You, "Distributed Edge Caching via Reinforcement Learning in Fog Radio Access Networks," 2019 IEEE 89th Vehicular Technology Conference (VTC2019-Spring), Kuala Lumpur, Malaysia, 2019, pp. 1-6, https://doi.org/10.1109/VTCSpring.2019.8746321
© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
https://urn.fi/URN:NBN:fi-fe2020050424733
Tiivistelmä
Abstract
In this paper, the distributed edge caching problem in fog radio access networks (F-RANs) is investigated. By considering the unknown spatio-temporal content popularity and user preference, a user request model based on hidden Markov process is proposed to characterize the fluctuant spatio-temporal traffic demands in F-RANs. Then, the Q-learning method based on the reinforcement learning (RL) framework is put forth to seek the optimal caching policy in a distributed manner, which enables fog access points (F-APs) to learn and track the potential dynamic process without extra communications cost. Furthermore, we propose a more efficient Q-learning method with value function approximation (Q-VFA-learning) to reduce complexity and accelerate convergence. Simulation results show that the performance of our proposed method is superior to those of the traditional methods.
Kokoelmat
- Avoin saatavuus [34150]