Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Background subtraction using multi-channel fused lasso

Liu, Xin; Zhao, Guoying (2019-01-13)

 
Avaa tiedosto
nbnfi-fe2020042422308.pdf (1.381Mt)
nbnfi-fe2020042422308_meta.xml (35.26Kt)
nbnfi-fe2020042422308_solr.xml (30.66Kt)
Lataukset: 

URL:
https://doi.org/10.2352/issn.2470-1173.2019.11.ipas-269

Liu, Xin
Zhao, Guoying
Society for Imaging Science & Technology
13.01.2019

Liu, X., & Zhao, G. (2019). Background subtraction using Multi-Channel Fused Lasso. Electronic Imaging, 2019(11), 269-1-269–6. https://doi.org/10.2352/issn.2470-1173.2019.11.ipas-269

https://rightsstatements.org/vocab/InC/1.0/
© 2019, Society for Imaging Science and Technology. Reprinted with permission of IS&T: The Society for Imaging Science and Technology sole copyright owners of the Electronic Imaging, Image Processing: Algorithms and systems XVII.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.2352/ISSN.2470-1173.2019.11.IPAS-269
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe2020042422308
Tiivistelmä

Abstract

Background subtraction is a fundamental problem in computer vision. Despite having made significant progress over the past decade, accurate foreground extraction in complex scenarios is still challenging. Recently, sparse signal recovery has attracted a considerable attention due to the fact that moving objects in videos are sparse. Considering the coherent of the foreground in spatial and temporal domain, many works use the structured sparsity or fused sparsity to regularize the foreground signals. However, existing methods ignore the group prior of foreground signals on multi-channels (such as the RGB). In fact, a pixel should be considered as a multi-channel signal. If a pixel is equal to the adjacent ones that means all the three RGB coefficients should be equal. In this paper, we propose a Multi-Channel Fused Lasso regularizer to explore the smoothness of multi-channels signals. The proposed method is validated on various challenging video sequences. Experiments demonstrate that our approach effectively works on a wide range of complex scenarios, and achieves a state-of-the-art performance.

Kokoelmat
  • Avoin saatavuus [38840]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen