Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Dense prediction for micro-expression spotting based on deep sequence model

Tran, Thuong-Khanh; Vo, Quang-Nhat; Hong, Xiaopeng; Zhao, Guoying (2019-06-13)

 
Avaa tiedosto
nbnfi-fe2020042722471.pdf (668.1Kt)
nbnfi-fe2020042722471_meta.xml (41.98Kt)
nbnfi-fe2020042722471_solr.xml (31.93Kt)
Lataukset: 

URL:
https://doi.org/10.2352/issn.2470-1173.2019.8.imawm-401

Tran, Thuong-Khanh
Vo, Quang-Nhat
Hong, Xiaopeng
Zhao, Guoying
Society for Imaging Science & Technology
13.06.2019

Tran, T.-K., Vo, Q.-N., Hong, X., & Zhao, G. (2019). Dense prediction for micro-expression spotting based on deep sequence model. Electronic Imaging, 2019(8), 401-1-401–406. https://doi.org/10.2352/issn.2470-1173.2019.8.imawm-401

https://rightsstatements.org/vocab/InC/1.0/
© 2019, Society for Imaging Science and Technology. Reprinted with permission of IS&T: The Society for Imaging Science and Technology sole copyright owners of the Electronic Imaging, Imaging and Multimedia Analytics in a Web and Mobile World 2019.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.2352/ISSN.2470-1173.2019.8.IMAWM-401
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe2020042722471
Tiivistelmä

Abstract

Micro-expression (ME) analysis has been becoming an attractive topic recently. Nevertheless, the studies of ME mostly focus on the recognition task while spotting task is rarely touched. While micro-expression recognition methods have obtained the promising results by applying deep learning techniques, the performance of the ME spotting task still needs to be largely improved. Most of the approaches still rely upon traditional techniques such as distance measurement between handcrafted features of frames which are not robust enough in detecting ME locations correctly. In this paper, we propose a novel method for ME spotting based on a deep sequence model. Our framework consists of two main steps: 1) From each position of video, we extract a spatial-temporal feature that can discriminate MEs among extrinsic movements. 2) We propose to use a LSTM network that can utilize both local and global correlation of the extracted feature to predict the score of the ME apex frame. The experiments on two publicly databases of ME spotting demonstrate the effectiveness of our proposed method.

Kokoelmat
  • Avoin saatavuus [37688]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen