Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Feature fusion with deep supervision for remote-sensing image scene classification

Muhammad, Usman; Wang, Weiqiang; Hadid, Abdenour (2018-12-17)

 
Avaa tiedosto
nbnfi-fe2020042822713.pdf (755.1Kt)
nbnfi-fe2020042822713_meta.xml (30.78Kt)
nbnfi-fe2020042822713_solr.xml (34.07Kt)
Lataukset: 

URL:
https://doi.org/10.1109/ICTAI.2018.00046

Muhammad, Usman
Wang, Weiqiang
Hadid, Abdenour
Institute of Electrical and Electronics Engineers
17.12.2018

U. Muhammad, W. Wang and A. Hadid, "Feature Fusion with Deep Supervision for Remote-Sensing Image Scene Classification," 2018 IEEE 30th International Conference on Tools with Artificial Intelligence (ICTAI), Volos, 2018, pp. 249-253, https://doi.org/10.1109/ICTAI.2018.00046

https://rightsstatements.org/vocab/InC/1.0/
© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/ICTAI.2018.00046
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe2020042822713
Tiivistelmä

Abstract

The convolutional neural networks (CNNs) have shown an intrinsic ability to automatically extract high level representations for image classification, but there is a major hurdle to their deployment in the remote-sensing domain because of a relative lack of training data. Moreover, traditional fusion methods use either low-level features or score-based fusion to fuse the features. In order to address the aforementioned issues, we employed a deep supervision (DS) strategy to enhance the generalization performance in the intermediate layers of the AlexNet model for remote-sensing image scene classification. The proposed DS strategy not only prevents from overfitting, but also extracts the features more transparently. Secondly, the canonical correlation analysis (CCA) is adopted as a feature fusion strategy to further refine the features with more discriminative power. The fused AlexNet features achieved by the proposed framework have much higher discrimination than the pure features. Extensive experiments on two challenging datasets: 1) UC MERCED data set and 2) WHU-RS dataset demonstrate that the two proposed approaches both enhance the performance of the original AlexNet architecture, and also outperform several state-of-the-art methods currently in use.

Kokoelmat
  • Avoin saatavuus [38618]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen