Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Universal perturbation attack against image retrieval

Li, Jie; Ji, Rongrong; Liu, Hong; Hong, Xiaopeng; Gao, Yue; Tian, Qi (2020-02-27)

 
Avaa tiedosto
nbnfi-fe2020060340339.pdf (4.497Mt)
nbnfi-fe2020060340339_meta.xml (39.01Kt)
nbnfi-fe2020060340339_solr.xml (40.52Kt)
Lataukset: 

URL:
https://doi.org/10.1109/ICCV.2019.00500

Li, Jie
Ji, Rongrong
Liu, Hong
Hong, Xiaopeng
Gao, Yue
Tian, Qi
Institute of Electrical and Electronics Engineers
27.02.2020

J. Li, R. Ji, H. Liu, X. Hong, Y. Gao and Q. Tian, "Universal Perturbation Attack Against Image Retrieval," 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Korea (South), 2019, pp. 4898-4907, doi: 10.1109/ICCV.2019.00500

https://rightsstatements.org/vocab/InC/1.0/
© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/ICCV.2019.00500
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe2020060340339
Tiivistelmä

Abstract

Universal adversarial perturbations (UAPs), a.k.a. input-agnostic perturbations, has been proved to exist and be able to fool cutting-edge deep learning models on most of the data samples. Existing UAP methods mainly focus on attacking image classification models. Nevertheless, little attention has been paid to attacking image retrieval systems. In this paper, we make the first attempt in attacking image retrieval systems. Concretely, image retrieval attack is to make the retrieval system return irrelevant images to the query at the top ranking list. It plays an important role to corrupt the neighbourhood relationships among features in image retrieval attack. To this end, we propose a novel method to generate retrieval-against UAP to break the neighbourhood relationships of image features via degrading the corresponding ranking metric. To expand the attack method to scenarios with varying input sizes or untouchable network parameters, a multi-scale random resizing scheme and a ranking distillation strategy are proposed. We evaluate the proposed method on four widely-used image retrieval datasets, and report a significant performance drop in terms of different metrics, such as mAP and mP@10. Finally, we test our attack methods on the real-world visual search engine, i.e., Google Images, which demonstrates the practical potentials of our methods.

Kokoelmat
  • Avoin saatavuus [38549]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen