Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Deep spatiotemporal representation of the face for automatic pain intensity estimation

Tavakolian, Mohammad; Hadid, Abdenour (2018-11-29)

 
Avaa tiedosto
nbnfi-fe2020041415352.pdf (381.2Kt)
nbnfi-fe2020041415352_meta.xml (28.56Kt)
nbnfi-fe2020041415352_solr.xml (28.41Kt)
Lataukset: 

URL:
https://doi.org/10.1109/ICPR.2018.8545324

Tavakolian, Mohammad
Hadid, Abdenour
IEEE Computer Society
29.11.2018

M. Tavakolian and A. Hadid, "Deep Spatiotemporal Representation of the Face for Automatic Pain Intensity Estimation," 2018 24th International Conference on Pattern Recognition (ICPR), Beijing, 2018, pp. 350-354, https://doi.org/10.1109/ICPR.2018.8545324

https://rightsstatements.org/vocab/InC/1.0/
© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/ICPR.2018.8545324
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe2020041415352
Tiivistelmä

Abstract

Automatic pain intensity assessment has a high value in disease diagnosis applications. Inspired by the fact that many diseases and brain disorders can interrupt normal facial expression formation, we aim to develop a computational model for automatic pain intensity assessment from spontaneous and micro facial variations. For this purpose, we propose a 3D deep architecture for dynamic facial video representation. The proposed model is built by stacking several convolutional modules where each module encompasses a 3D convolution kernel with a fixed temporal depth, several parallel 3D convolutional kernels with different temporal depths, and an average pooling layer. Deploying variable temporal depths in the proposed architecture allows the model to effectively capture a wide range of spatiotemporal variations on the faces. Extensive experiments on the UNBC-McMaster Shoulder Pain Expression Archive database show that our proposed model yields in a promising performance compared to the state-of-the-art in automatic pain intensity estimation.

Kokoelmat
  • Avoin saatavuus [38618]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen