Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Encoding temporal information for automatic depression recognition from facial analysis

Carneiro de Melo, Wheidima; Granger, Eric; Bordallo Lopez, Miguel (2020-05-14)

 
Avaa tiedosto
nbnfi-fe2020090267167.pdf (2.214Mt)
nbnfi-fe2020090267167_meta.xml (32.21Kt)
nbnfi-fe2020090267167_solr.xml (36.49Kt)
Lataukset: 

URL:
https://doi.org/10.1109/ICASSP40776.2020.9054375

Carneiro de Melo, Wheidima
Granger, Eric
Bordallo Lopez, Miguel
Institute of Electrical and Electronics Engineers
14.05.2020

W. Carneiro de Melo, E. Granger and M. B. Lopez, "Encoding Temporal Information For Automatic Depression Recognition From Facial Analysis," ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Barcelona, Spain, 2020, pp. 1080-1084, doi: 10.1109/ICASSP40776.2020.9054375

https://rightsstatements.org/vocab/InC/1.0/
© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/ICASSP40776.2020.9054375
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe2020090267167
Tiivistelmä

Abstract

Depression is a mental illness that may be harmful to an individual’s health. Using deep learning models to recognize the facial expressions of individuals captured in videos has shown promising results for automatic depression detection. Typically, depression levels are recognized using 2D-Convolutional Neural Networks (CNNs) that are trained to extract static features from video frames, which impairs the capture of dynamic spatio-temporal relations. As an alternative, 3D-CNNs may be employed to extract spatiotemporal features from short video clips, although the risk of overfitting increases due to the limited availability of labeled depression video data. To address these issues, we propose a novel temporal pooling method to capture and encode the spatio-temporal dynamic of video clips into an image map. This approach allows fine-tuning a pre-trained 2D CNN to model facial variations, and thereby improving the training process and model accuracy. Our proposed method is based on two-stream model that performs late fusion of appearance and dynamic information. Extensive experiments on two benchmark AVEC datasets indicate that the proposed method is efficient and outperforms the state-of-the-art schemes.

Kokoelmat
  • Avoin saatavuus [38319]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen