Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Multi-hop federated private data augmentation with sample compression

Jeong, Eunjeong; Oh, Seungeun; Park, Jihong; Kim, Hyesung; Bennis, Mehdi; Kim, Seong-Lyun (2019-07-15)

 
Avaa tiedosto
nbnfi-fe2020102787867.pdf (2.899Mt)
nbnfi-fe2020102787867_meta.xml (39.23Kt)
nbnfi-fe2020102787867_solr.xml (28.89Kt)
Lataukset: 

URL:
https://arxiv.org/abs/1907.06426

Jeong, Eunjeong
Oh, Seungeun
Park, Jihong
Kim, Hyesung
Bennis, Mehdi
Kim, Seong-Lyun
Arxiv
15.07.2019

Jeong, E., Oh, S., Park, J., Kim, H., Bennis, M., Kim, S-S., Multi-hop federated private data augmentation with sample compression, https://arxiv.org/abs/1907.06426

https://rightsstatements.org/vocab/InC/1.0/
© The Authors 2019.
https://rightsstatements.org/vocab/InC/1.0/
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe2020102787867
Tiivistelmä

Abstract

On-device machine learning (ML) has brought about the accessibility to a tremendous amount of data from the users while keeping their local data private instead of storing it in a central entity. However, for privacy guarantee, it is inevitable at each device to compensate for the quality of data or learning performance, especially when it has a non-IID training dataset. In this paper, we propose a data augmentation framework using a generative model: multi-hop federated augmentation with sample compression (MultFAug). A multi-hop protocol speeds up the end-to-end over-the-air transmission of seed samples by enhancing the transport capacity. The relaying devices guarantee stronger privacy preservation as well since the origin of each seed sample is hidden in those participants. For further privatization on the individual sample level, the devices compress their data samples. The devices sparsify their data samples prior to transmissions to reduce the sample size, which impacts the communication payload. This preprocessing also strengthens the privacy of each sample, which corresponds to the input perturbation for preserving sample privacy. The numerical evaluations show that the proposed framework significantly improves privacy guarantee, transmission delay, and local training performance with adjustment to the number of hops and compression rate.

Kokoelmat
  • Avoin saatavuus [37744]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen