Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Robust Kronecker component analysis

Bahri, Mehdi; Panagakis, Yannis; Zafeiriou, Stefanos (2018-11-15)

 
Avaa tiedosto
nbnfi-fe2020060540834.pdf (2.646Mt)
nbnfi-fe2020060540834_meta.xml (30.90Kt)
nbnfi-fe2020060540834_solr.xml (38.07Kt)
Lataukset: 

URL:
https://doi.org/10.1109/TPAMI.2018.2881476

Bahri, Mehdi
Panagakis, Yannis
Zafeiriou, Stefanos
Institute of Electrical and Electronics Engineers
15.11.2018

M. Bahri, Y. Panagakis and S. Zafeiriou, "Robust Kronecker Component Analysis," in IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 41, no. 10, pp. 2365-2379, 1 Oct. 2019, doi: 10.1109/TPAMI.2018.2881476

https://rightsstatements.org/vocab/InC/1.0/
© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/TPAMI.2018.2881476
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe2020060540834
Tiivistelmä

Abstract

Dictionary learning and component analysis models are fundamental for learning compact representations that are relevant to a given task (feature extraction, dimensionality reduction, denoising, etc.). The model complexity is encoded by means of specific structure, such as sparsity, low-rankness, or nonnegativity. Unfortunately, approaches like K-SVD — that learn dictionaries for sparse coding via Singular Value Decomposition (SVD) — are hard to scale to high-volume and high-dimensional visual data, and fragile in the presence of outliers. Conversely, robust component analysis methods such as the Robust Principal Component Analysis (RPCA) are able to recover low-complexity (e.g., low-rank) representations from data corrupted with noise of unknown magnitude and support, but do not provide a dictionary that respects the structure of the data (e.g., images), and also involve expensive computations. In this paper, we propose a novel Kronecker-decomposable component analysis model, coined as Robust Kronecker Component Analysis (RKCA), that combines ideas from sparse dictionary learning and robust component analysis. RKCA has several appealing properties, including robustness to gross corruption; it can be used for low-rank modeling, and leverages separability to solve significantly smaller problems. We design an efficient learning algorithm by drawing links with a restricted form of tensor factorization, and analyze its optimality and low-rankness properties. The effectiveness of the proposed approach is demonstrated on real-world applications, namely background subtraction and image denoising and completion, by performing a thorough comparison with the current state of the art.

Kokoelmat
  • Avoin saatavuus [37798]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen