Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Decentralized deep reinforcement learning for delay-power tradeoff in vehicular communications

Chen, Xianfu; Wu, Celimuge; Zhang, Honggang; Zhang, Yan; Bennis, Mehdi; Vuojala, Heli (2019-07-15)

 
Avaa tiedosto
nbnfi-fe202002195895.pdf (412.9Kt)
nbnfi-fe202002195895_meta.xml (38.81Kt)
nbnfi-fe202002195895_solr.xml (36.5Kt)
Lataukset: 

URL:
https://doi.org/10.1109/ICC.2019.8761949

Chen, Xianfu
Wu, Celimuge
Zhang, Honggang
Zhang, Yan
Bennis, Mehdi
Vuojala, Heli
Institute of Electrical and Electronics Engineers
15.07.2019

X. Chen, C. Wu, H. Zhang, Y. Zhang, M. Bennis and H. Vuojala, "Decentralized Deep Reinforcement Learning for Delay-Power Tradeoff in Vehicular Communications," ICC 2019 - 2019 IEEE International Conference on Communications (ICC), Shanghai, China, 2019, pp. 1-6. doi: 10.1109/ICC.2019.8761949

https://rightsstatements.org/vocab/InC/1.0/
© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/ICC.2019.8761949
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe202002195895
Tiivistelmä

Abstract

This paper targets at the problem of radio resource management for expected long-term delay-power tradeoff in vehicular communications. At each decision epoch, the road side unit observes the global network state, allocates channels and schedules data packets for all vehicle user equipment-pairs (VUE-pairs). The decision-making procedure is modelled as a discrete-time Markov decision process (MDP). The technical challenges in solving an optimal control policy originate from highly spatial mobility of vehicles and temporal variations in data traffic. To simplify the decision-making process, we first decompose the MDP into a series of per-VUE-pair MDPs. We then propose an online long short-term memory based deep reinforcement learning algorithm to break the curse of high dimensionality in state space faced by each per-VUE-pair MDP. With the proposed algorithm, the optimal channel allocation and packet scheduling decision at each epoch can be made in a decentralized way in accordance with the partial observations of the global network state at the VUE-pairs. Numerical simulations validate the theoretical analysis and show the effectiveness of the proposed online learning algorithm.

Kokoelmat
  • Avoin saatavuus [38358]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen