Electronic and magnetic characterization of epitaxial VSe₂ monolayers on superconducting NbSe₂
Kezilebieke, Shawulienu; Huda, Md Nurul; Dreher, Paul; Manninen, Ilkka; Zhou, Yifan; Sainio, Jani; Mansell, Rhodri; Ugeda, Miguel M.; van Dijken, Sebastiaan; Komsa, Hannu-Pekka; Liljeroth, Peter (2020-06-26)
Kezilebieke, S., Huda, M.N., Dreher, P. et al. Electronic and magnetic characterization of epitaxial VSe₂ monolayers on superconducting NbSe₂. Commun Phys 3, 116 (2020). https://doi.org/10.1038/s42005-020-0377-4
© The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
https://creativecommons.org/licenses/by/4.0/
https://urn.fi/URN:NBN:fi-fe2020091069231
Tiivistelmä
Abstract
There has been enormous recent interest in heterostructures of two-dimensional van der Waals materials. Integrating materials with different quantum ground states in vertical heterostructures is predicted to lead to novel electronic properties that are not found in the constituent layers. Here, we present direct synthesis of a superconductor-magnet hybrid heterostructure by combining superconducting niobium diselenide (NbSe₂) with the monolayer vanadium diselenide (VSe₂). Molecular-beam epitaxy growth in ultra-high vacuum yields clean and atomically sharp interfaces. Combining different characterization techniques and density-functional theory calculations, we investigate the electronic and magnetic properties of VSe₂ on NbSe₂. Low temperature scanning tunneling microscopy measurements show an absence of the typical charge density wave on VSe₂ and demonstrate a reduction of the superconducting gap of NbSe₂ on the VSe₂ layer. This suggests magnetization of the VSe₂ sheet, at least on the local scale. Our work demonstrates superconducting-magnetic hybrid materials with potential applications in future electronics devices.
Kokoelmat
- Avoin saatavuus [34357]