Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Toward ML/AI-based prediction of mobile service usage in next-generation networks

Taleb, Tarik; Laghrissi, Abdelquoddouss; Bensalem, Djamel Eddine (2020-03-27)

 
Avaa tiedosto
nbnfi-fe2020100983552.pdf (534.1Kt)
nbnfi-fe2020100983552_meta.xml (30.59Kt)
nbnfi-fe2020100983552_solr.xml (29.43Kt)
Lataukset: 

URL:
https://doi.org/10.1109/MNET.001.1900462

Taleb, Tarik
Laghrissi, Abdelquoddouss
Bensalem, Djamel Eddine
Institute of Electrical and Electronics Engineers
27.03.2020

T. Taleb, A. Laghrissi and D. E. Bensalem, "Toward ML/AI-Based Prediction of Mobile Service Usage in Next-Generation Networks," in IEEE Network, vol. 34, no. 4, pp. 106-111, July/August 2020, doi: 10.1109/MNET.001.1900462

https://rightsstatements.org/vocab/InC/1.0/
© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/MNET.001.1900462
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe2020100983552
Tiivistelmä

Abstract

The adoption of machine learning techniques in next-generation networks has increasingly attracted the attention of the research community. This is to provide adaptive learning and decision-making approaches to meet the requirements of different verticals, and to guarantee the appropriate performance requirements in complex mobility scenarios. In this perspective, the characterization of mobile service usage represents a fundamental step. In this vein, this paper highlights the new features and capabilities offered by the “Network Slice Planner” (NSP) in its second version. It also proposes a method combining both supervised and unsupervised learning techniques to analyze the behavior of a mass of mobile users in terms of service consumption. We exploit the data provided by the NSP v2 to conduct our analysis. Furthermore, we provide an evaluation of both the accuracy of the predictor and the performance of the underlying MEC infrastructure.

Kokoelmat
  • Avoin saatavuus [40203]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen