Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Content popularity prediction in fog radio access networks : a federated learning based approach

Wu, Yuting; Jiang, Yanxiang; Bennis, Mehdi; Zheng, Fuchun; Gao, Xiqi; You, Xiaohu (2020-07-27)

 
Avaa tiedosto
nbnfi-fe2020100678118.pdf (307.3Kt)
nbnfi-fe2020100678118_meta.xml (40.13Kt)
nbnfi-fe2020100678118_solr.xml (41.68Kt)
Lataukset: 

URL:
https://doi.org/10.1109/ICC40277.2020.9148697

Wu, Yuting
Jiang, Yanxiang
Bennis, Mehdi
Zheng, Fuchun
Gao, Xiqi
You, Xiaohu
Institute of Electrical and Electronics Engineers
27.07.2020

Y. Wu, Y. Jiang, M. Bennis, F. Zheng, X. Gao and X. You, "Content Popularity Prediction in Fog Radio Access Networks: A Federated Learning Based Approach," ICC 2020 - 2020 IEEE International Conference on Communications (ICC), Dublin, Ireland, 2020, pp. 1-6, doi: 10.1109/ICC40277.2020.9148697

https://rightsstatements.org/vocab/InC/1.0/
© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/ICC40277.2020.9148697
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe2020100678118
Tiivistelmä

Abstract

In this paper, the content popularity prediction problem in fog radio access networks (F-RANs) is investigated. In order to obtain accurate prediction with low complexity, we propose a novel context-aware popularity prediction policy based on federated learning. Firstly, user preference learning is applied by considering that users prefer to request the contents they are interested in. Then, users’ context information is utilized to cluster users efficiently by adaptive context space partitioning. After that, we formulate a popularity prediction optimization problem to learn the local model parameters using the stochastic variance reduced gradient (SVRG) algorithm. Finally, federated learning based model integration is proposed to construct the global popularity prediction model based on local models by combining the distributed approximate Newton (DANE) algorithm with SVRG. Our proposed popularity prediction policy not only predicts content popularity accurately, but also significantly reduces computational complexity. Simulation results show that our proposed policy increases the cache hit rate by up to 21.5 % compared to the traditional policies.

Kokoelmat
  • Avoin saatavuus [37957]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen