Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Intelligent edge : leveraging deep imitation learning for mobile edge computation offloading

Yu, Shuai; Chen, Xu; Yang, Lei; Wu, Di; Bennis, Mehdi; Zhang, Junshan (2020-03-04)

 
Avaa tiedosto
nbnfi-fe2020060841061.pdf (740.4Kt)
nbnfi-fe2020060841061_meta.xml (38.26Kt)
nbnfi-fe2020060841061_solr.xml (32.88Kt)
Lataukset: 

URL:
https://doi.org/10.1109/MWC.001.1900232

Yu, Shuai
Chen, Xu
Yang, Lei
Wu, Di
Bennis, Mehdi
Zhang, Junshan
Institute of Electrical and Electronics Engineers
04.03.2020

S. Yu, X. Chen, L. Yang, D. Wu, M. Bennis and J. Zhang, "Intelligent Edge: Leveraging Deep Imitation Learning for Mobile Edge Computation Offloading," in IEEE Wireless Communications, vol. 27, no. 1, pp. 92-99, February 2020, doi: 10.1109/MWC.001.1900232

https://rightsstatements.org/vocab/InC/1.0/
© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/MWC.001.1900232
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe2020060841061
Tiivistelmä

Abstract

In this work, we propose a new deep imitation learning (DIL)-driven edge-cloud computation offloading framework for MEC networks. A key objective for the framework is to minimize the offloading cost in time-varying network environments through optimal behavioral cloning. Specifically, we first introduce our computation offloading model for MEC in detail. Then we make fine-grained offloading decisions for a mobile device, and the problem is formulated as a multi-label classification problem, with local execution cost and remote network resource usage consideration. To minimize the offloading cost, we train our decision making engine by leveraging the deep imitation learning method, and further evaluate its performance through an extensive numerical study. Simulation results show that our proposal outperforms other benchmark policies in offloading accuracy and offloading cost reduction. At last, we discuss the directions and advantages of applying deep learning methods to multiple MEC research areas, including edge data analytics, dynamic resource allocation, security, and privacy, respectively.

Kokoelmat
  • Avoin saatavuus [38638]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen