Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

A low-complexity detection algorithm for uplink massive MIMO systems based on alternating minimization

Elgabli, Anis; Elghariani, Ali; Aggarwal, Vaneet; Bell, Mark R. (2019-02-15)

 
Avaa tiedosto
nbnfi-fe2020042722473.pdf (241.1Kt)
nbnfi-fe2020042722473_meta.xml (32.31Kt)
nbnfi-fe2020042722473_solr.xml (30.64Kt)
Lataukset: 

URL:
https://doi.org/10.1109/LWC.2019.2899852

Elgabli, Anis
Elghariani, Ali
Aggarwal, Vaneet
Bell, Mark R.
Institute of Electrical and Electronics Engineers
15.02.2019

A. Elgabli, A. Elghariani, V. Aggarwal and M. R. Bell, "A Low-Complexity Detection Algorithm for Uplink Massive MIMO Systems Based on Alternating Minimization," in IEEE Wireless Communications Letters, vol. 8, no. 3, pp. 917-920, June 2019, https://doi.org/10.1109/LWC.2019.2899852

https://rightsstatements.org/vocab/InC/1.0/
© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/LWC.2019.2899852
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe2020042722473
Tiivistelmä

Abstract

In this letter, we propose an algorithm based on the alternating minimization technique to solve the uplink massive multiple-input multiple-output (MIMO) detection problem. The proposed algorithm is specifically designed to avoid any matrix inversion and any computations of the Gram matrix at the receiver. The algorithm provides a lower complexity compared to the conventional minimum mean square error detection technique, especially when the total number of user equipment antennas (across all users) is close to the number of base station antennas. The idea is that the algorithm re-formulates the maximum-likelihood detection problem as a sum of convex functions based on decomposing the received vector into multiple vectors. Each vector represents the contribution of one of the transmitted symbols in the received vector. Alternating minimization is used to solve the new formulated problem in an iterative manner with a closed-form solution update in every iteration. Simulation results demonstrate the efficacy of the proposed algorithm in the uplink massive MIMO setting for both coded and uncoded cases.

Kokoelmat
  • Avoin saatavuus [38865]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen