Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Optimized age of information tail for ultra-reliable low-latency communications in vehicular networks

Abdel-Aziz, Mohamed K.; Samarakoon, Sumudu; Liu, Chen-Feng; Bennis, Mehdi; Saad, Walid (2019-12-20)

 
Avaa tiedosto
nbnfi-fe202001131883.pdf (1.660Mt)
nbnfi-fe202001131883_meta.xml (36.58Kt)
nbnfi-fe202001131883_solr.xml (34.31Kt)
Lataukset: 

URL:
https://doi.org/10.1109/TCOMM.2019.2961083

Abdel-Aziz, Mohamed K.
Samarakoon, Sumudu
Liu, Chen-Feng
Bennis, Mehdi
Saad, Walid
Institute of Electrical and Electronics Engineers
20.12.2019

M. K. Abdel-Aziz, S. Samarakoon, C. Liu, M. Bennis and W. Saad, "Optimized Age of Information Tail for Ultra-Reliable Low-Latency Communications in Vehicular Networks," in IEEE Transactions on Communications, vol. 68, no. 3, pp. 1911-1924, March 2020. doi: 10.1109/TCOMM.2019.2961083

https://rightsstatements.org/vocab/InC/1.0/
© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/TCOMM.2019.2961083
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe202001131883
Tiivistelmä

Abstract

While the notion of age of information (AoI) has recently been proposed for analyzing ultra-reliable low-latency communications (URLLC), most of the existing works have focused on the average AoI measure. Designing a wireless network based on average AoI will fail to characterize the performance of URLLC systems, as it cannot account for extreme AoI events, occurring with very low probabilities. In contrast, this paper goes beyond the average AoI to improve URLLC in a vehicular communication network by characterizing and controlling the AoI tail distribution. In particular, the transmission power minimization problem is studied under stringent URLLC constraints in terms of probabilistic AoI for both deterministic and Markovian traffic arrivals. Accordingly, an efficient novel mapping between AoI and queue-related distributions is proposed. Subsequently, extreme value theory (EVT) and Lyapunov optimization techniques are adopted to formulate and solve the problem considering both long and short packets transmissions. Simulation results show over a two-fold improvement, in shortening the AoI distribution tail, versus a baseline that models the maximum queue length distribution, in addition to a tradeoff between arrival rate and AoI.

Kokoelmat
  • Avoin saatavuus [37744]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen