Multiple kernel clustering with neighbor-kernel subspace segmentation
Zhou, Sihang; Liu, Xinwang; Li, Miaomiao; Zhu, En; Liu, Li; Zhang, Changwang; Yin, Jianping (2019-06-28)
S. Zhou et al., "Multiple Kernel Clustering With Neighbor-Kernel Subspace Segmentation," in IEEE Transactions on Neural Networks and Learning Systems, vol. 31, no. 4, pp. 1351-1362, April 2020. doi: 10.1109/TNNLS.2019.2919900
© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
https://urn.fi/URN:NBN:fi-fe202001131854
Tiivistelmä
Abstract
Multiple kernel clustering (MKC) has been intensively studied during the last few decades. Even though they demonstrate promising clustering performance in various applications, existing MKC algorithms do not sufficiently consider the intrinsic neighborhood structure among base kernels, which could adversely affect the clustering performance. In this paper, we propose a simple yet effective neighbor-kernel-based MKC algorithm to address this issue. Specifically, we first define a neighbor kernel, which can be utilized to preserve the block diagonal structure and strengthen the robustness against noise and outliers among base kernels. After that, we linearly combine these base neighbor kernels to extract a consensus affinity matrix through an exact-rank-constrained subspace segmentation. The naturally possessed block diagonal structure of neighbor kernels better serves the subsequent subspace segmentation, and in turn, the extracted shared structure is further refined through subspace segmentation based on the combined neighbor kernels. In this manner, the above two learning processes can be seamlessly coupled and negotiate with each other to achieve better clustering. Furthermore, we carefully design an efficient iterative optimization algorithm with proven convergence to address the resultant optimization problem. As a by-product, we reveal an interesting insight into the exact-rank constraint in ridge regression by careful theoretical analysis: it back-projects the solution of the unconstrained counterpart to its principal components. Comprehensive experiments have been conducted on several benchmark data sets, and the results demonstrate the effectiveness of the proposed algorithm.
Kokoelmat
- Avoin saatavuus [29694]
Samankaltainen aineisto
Näytetään aineisto, joilla on samankaltaisia nimekkeitä, tekijöitä tai asiasanoja.
-
Efficient and effective regularized incomplete multi-view clustering
Liu, Xinwang; Li, Miaomiao; Tang, Chang; Xia, Jingyuan; Xiong, Jian; Liu, Li; Kloft, Marius; Zhu, En
IEEE transactions on pattern analysis and machine intelligence : 8 (Institute of Electrical and Electronics Engineers, 18.02.2021) -
Analyzing group-level emotion with global alignment kernel based approach
Huang, Xiaohua; Dhall, Abhinav; Goecke, Roland; Pietikäinen, Matti; Zhao, Guoying
IEEE transactions on affective computing : 2 (Institute of Electrical and Electronics Engineers, 14.11.2019) -
Learning discriminative models from structured multi-sensor data for human context recognition
Suutala, Jaakko
Acta Universitatis Ouluensis. C, Technica : 421 (University of Oulu, 17.06.2012)