Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Multiple kernel clustering with neighbor-kernel subspace segmentation

Zhou, Sihang; Liu, Xinwang; Li, Miaomiao; Zhu, En; Liu, Li; Zhang, Changwang; Yin, Jianping (2019-06-28)

 
Avaa tiedosto
nbnfi-fe202001131854.pdf (4.818Mt)
nbnfi-fe202001131854_meta.xml (37.90Kt)
nbnfi-fe202001131854_solr.xml (41.73Kt)
Lataukset: 

URL:
https://doi.org/10.1109/TNNLS.2019.2919900

Zhou, Sihang
Liu, Xinwang
Li, Miaomiao
Zhu, En
Liu, Li
Zhang, Changwang
Yin, Jianping
Institute of Electrical and Electronics Engineers
28.06.2019

S. Zhou et al., "Multiple Kernel Clustering With Neighbor-Kernel Subspace Segmentation," in IEEE Transactions on Neural Networks and Learning Systems, vol. 31, no. 4, pp. 1351-1362, April 2020. doi: 10.1109/TNNLS.2019.2919900

https://rightsstatements.org/vocab/InC/1.0/
© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/TNNLS.2019.2919900
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe202001131854
Tiivistelmä

Abstract

Multiple kernel clustering (MKC) has been intensively studied during the last few decades. Even though they demonstrate promising clustering performance in various applications, existing MKC algorithms do not sufficiently consider the intrinsic neighborhood structure among base kernels, which could adversely affect the clustering performance. In this paper, we propose a simple yet effective neighbor-kernel-based MKC algorithm to address this issue. Specifically, we first define a neighbor kernel, which can be utilized to preserve the block diagonal structure and strengthen the robustness against noise and outliers among base kernels. After that, we linearly combine these base neighbor kernels to extract a consensus affinity matrix through an exact-rank-constrained subspace segmentation. The naturally possessed block diagonal structure of neighbor kernels better serves the subsequent subspace segmentation, and in turn, the extracted shared structure is further refined through subspace segmentation based on the combined neighbor kernels. In this manner, the above two learning processes can be seamlessly coupled and negotiate with each other to achieve better clustering. Furthermore, we carefully design an efficient iterative optimization algorithm with proven convergence to address the resultant optimization problem. As a by-product, we reveal an interesting insight into the exact-rank constraint in ridge regression by careful theoretical analysis: it back-projects the solution of the unconstrained counterpart to its principal components. Comprehensive experiments have been conducted on several benchmark data sets, and the results demonstrate the effectiveness of the proposed algorithm.

Kokoelmat
  • Avoin saatavuus [37561]

Samankaltainen aineisto

Näytetään aineisto, joilla on samankaltaisia nimekkeitä, tekijöitä tai asiasanoja.

  • Analyzing group-level emotion with global alignment kernel based approach 

    Huang, Xiaohua; Dhall, Abhinav; Goecke, Roland; Pietikäinen, Matti; Zhao, Guoying
    IEEE transactions on affective computing : 2 (Institute of Electrical and Electronics Engineers, 14.11.2019)
  • Efficient and effective regularized incomplete multi-view clustering 

    Liu, Xinwang; Li, Miaomiao; Tang, Chang; Xia, Jingyuan; Xiong, Jian; Liu, Li; Kloft, Marius; Zhu, En
    IEEE transactions on pattern analysis and machine intelligence : 8 (Institute of Electrical and Electronics Engineers, 18.02.2021)
  • A scale space approach for exploring structure in spherical data 

    Vuollo, Ville; Holmström, Lasse
    Computational statistics & data analysis (Elsevier, 04.04.2018)
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen