Time-series clustering with jointly learning deep representations, clusters and temporal boundaries
Tzirakis, Panagiotis; Nicolaou, Mihalis A.; Schuller, Björn; Zafeiriou, Stefanos (2019-07-11)
P. Tzirakis, M. A. Nicolaou, B. Schuller and S. Zafeiriou, "Time-series Clustering with Jointly Learning Deep Representations, Clusters and Temporal Boundaries," 2019 14th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2019), Lille, France, 2019, pp. 1-5. doi: 10.1109/FG.2019.8756618
© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
https://urn.fi/URN:NBN:fi-fe202003248966
Tiivistelmä
Abstract
Clustering and segmentation of temporal data is an important task across several fields, with prominent applications in computer vision and machine learning such as face and gesture segmentation. Several related methods have been proposed in literature, focusing on learning temporal boundaries and clusters, with recent works focusing on learning deep representations for clustering. However, none of the proposed methods is suitable for jointly learning segments, clusters, as well as representations. In this paper, we propose the first methodology that simultaneously discovers suitable deep representations, as well as clusters and temporal boundaries, with the clustering process providing supervisory cues for updating temporal boundaries and training the proposed deep learning architecture. We demonstrate the power of the proposed approach on a human motion segmentation task using the CMU-MMAC database. Our method provides the best results with respect to normalized mutual information compared to other clustering algorithms.
Kokoelmat
- Avoin saatavuus [34618]