A preliminary analysis of user’s body impact on signal polarization in WBANs
Turbic, Kenan; Särestöniemi, Mariella; Hämäläinen, Matti; Kumpuniemi, Timo; Correia, Luis M. (2020-07-08)
K. Turbic, M. Särestöniemi, M. Hämäläinen, T. Kumpuniemi and L. M. Correia, "A Preliminary Analysis of User’s Body Impact on Signal Polarization in WBANs," 2020 14th European Conference on Antennas and Propagation (EuCAP), Copenhagen, Denmark, 2020, pp. 1-4, doi: 10.23919/EuCAP48036.2020.9135582
© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
https://urn.fi/URN:NBN:fi-fe2020080347900
Tiivistelmä
Abstract
This paper analyses the impact of the human body on antenna radiation characteristics, with a focus on the polarization aspect. The effect of the body tissues on a wrist-worn ultra-wideband double loop antenna radiation characteristics is investigated at 3, 4 and 5 GHz, based on numerical full-wave simulations complemented with a voxel model of a hand. Results show a strong influence of the body on the gain and polarization characteristics; the radiation in the direction towards the body is suppressed by 20 dB or more, and the antenna polarization changes from a linear to an elliptical one. By simulating an off-body communications scenario with the user walking at a fixed distance from the off-body antenna, up to 6.5 dB lower received power is obtained by using the wearable antenna radiation pattern simulated with the hand phantom, compared to the case when the antenna in free space.
Kokoelmat
- Avoin saatavuus [34608]