Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

DHA : supervised deep learning to hash with an adaptive loss function

Xu, Jiehao; Guo, Chengyu; Liu, Qingjie; Qin, Jie; Wang, Yunhong; Liu, Li (2020-03-05)

 
Avaa tiedosto
nbnfi-fe2020101584132.pdf (1.100Mt)
nbnfi-fe2020101584132_meta.xml (38.81Kt)
nbnfi-fe2020101584132_solr.xml (36.49Kt)
Lataukset: 

URL:
https://doi.org/10.1109/ICCVW.2019.00368

Xu, Jiehao
Guo, Chengyu
Liu, Qingjie
Qin, Jie
Wang, Yunhong
Liu, Li
Institute of Electrical and Electronics Engineers
05.03.2020

J. Xu, C. Guo, Q. Liu, J. Qin, Y. Wang and L. Liu, "DHA: Supervised Deep Learning to Hash with an Adaptive Loss Function," 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW), Seoul, Korea (South), 2019, pp. 3054-3062, doi: 10.1109/ICCVW.2019.00368

https://rightsstatements.org/vocab/InC/1.0/
© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/ICCVW.2019.00368
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe2020101584132
Tiivistelmä

Abstract

Hashing, which refers to the binary embedding of high-dimensional data, has been an effective solution for fast nearest neighbor retrieval in large-scale databases due to its computational and storage efficiency. Recently, deep learning to hash has been attracting increasing attention since it has shown great potential in improving retrieval quality by leveraging the strengths of deep neural networks. In this paper, we consider the problem of supervised hashing and propose an effective model (i.e., DHA), which is able to generate compact and discriminative binary codes while preserving semantic similarities of original data with an adaptive loss function. The key idea is that we scale and shift the loss function to avoid the saturation of gradients during training, and simultaneously adjust the loss to adapt to different levels of similarities of data. We evaluate the proposed DHA on three widely-used benchmarks, i.e., NUS-WIDE, CIFAR-10, and MS COCO. The state-of-the-art image retrieval performance clearly shows the effectiveness of our method in learning discriminative hash codes for nearest neighbor retrieval.

Kokoelmat
  • Avoin saatavuus [37744]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen