Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Automated visual defect detection for flat steel surface : a survey

Luo, Qiwu; Fang, Xiaoxin; Liu, Li; Yang, Chunhua; Sun, Yichuang (2020-01-01)

 
Avaa tiedosto
nbnfi-fe202001303919.pdf (1.283Mt)
nbnfi-fe202001303919_meta.xml (32.63Kt)
nbnfi-fe202001303919_solr.xml (35.13Kt)
Lataukset: 

URL:
https://doi.org/10.1109/TIM.2019.2963555

Luo, Qiwu
Fang, Xiaoxin
Liu, Li
Yang, Chunhua
Sun, Yichuang
Institute of Electrical and Electronics Engineers
01.01.2020

Q. Luo, X. Fang, L. Liu, C. Yang and Y. Sun, "Automated Visual Defect Detection for Flat Steel Surface: A Survey," in IEEE Transactions on Instrumentation and Measurement, vol. 69, no. 3, pp. 626-644, March 2020, https://doi.org/10.1109/TIM.2019.2963555

https://rightsstatements.org/vocab/InC/1.0/
© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/TIM.2019.2963555
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe202001303919
Tiivistelmä

Abstract

Automated computer-vision-based defect detection has received much attention with the increasing surface quality assurance demands for the industrial manufacturing of flat steels. This paper attempts to present a comprehensive survey on surface defect detection technologies by reviewing about 120 publications over the last two decades for three typical flat steel products of con-casting slabs, hot- and cold-rolled steel strips. According to the nature of algorithms as well as image features, the existing methodologies are categorized into four groups: Statistical, spectral, model-based and machine learning. These literatures are summarized in this review to enable easy referral to suitable methods for diverse application scenarios in steel mills. Realization recommendations and future research trends are also addressed at an abstract level.

Kokoelmat
  • Avoin saatavuus [38840]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen