Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

A convolutional neural network approach for classification of LPWAN technologies : Sigfox, LoRA and IEEE 802.15.4g

Shahid, Adnan; Fontaine, Jaron; Camelo, Miguel; Haxhibeqiri, Jetmir; Saelens, Martijn; Khan, Zaheer; Moerman, Ingrid; De Poorter, Eli (2019-09-05)

 
Avaa tiedosto
nbnfi-fe2020060841088.pdf (19.23Mt)
nbnfi-fe2020060841088_meta.xml (44.47Kt)
nbnfi-fe2020060841088_solr.xml (38.32Kt)
Lataukset: 

URL:
https://doi.org/10.1109/SAHCN.2019.8824856

Shahid, Adnan
Fontaine, Jaron
Camelo, Miguel
Haxhibeqiri, Jetmir
Saelens, Martijn
Khan, Zaheer
Moerman, Ingrid
De Poorter, Eli
Institute of Electrical and Electronics Engineers
05.09.2019

A. Shahid et al., "A Convolutional Neural Network Approach for Classification of LPWAN Technologies: Sigfox, LoRA and IEEE 802.15.4g," 2019 16th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON), Boston, MA, USA, 2019, pp. 1-8, doi: 10.1109/SAHCN.2019.8824856

https://rightsstatements.org/vocab/InC/1.0/
© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/SAHCN.2019.8824856
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe2020060841088
Tiivistelmä

Abstract

This paper presents a Convolutional Neural Network (CNN) approach for classification of low power wide area network (LPWAN) technologies such as Sigfox, LoRA and IEEE 802.15.4g. Since the technologies operate in unlicensed sub-GHz bands, their transmissions can interfere with each other and significantly degrade their performance. This situation further intensifies when the network density increases which will be the case of future LPWANs. In this regard, it becomes essential to classify coexisting technologies so that the impact of interference can be minimized by making optimal spectrum decisions. State-of-the-art technology classification approaches use signal processing approaches for solving the task. However, such techniques are not scalable and require domain-expertise knowledge for developing new rules for each new technology. On the contrary, we present a CNN approach for classification which requires limited domain-expertise knowledge, and it can be scalable to any number of wireless technologies. We present and compare two CNN based classifiers named CNN based on in-phase and quadrature (IQ) and CNN based on Fast Fourier Transform (FFT). The results illustrate that CNN based on IQ achieves classification accuracy close to 97% similar to CNN based on FFT and thus, avoiding the need for performing FFT.

Kokoelmat
  • Avoin saatavuus [37744]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen