Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

One pixel image and RF signal based split learning for mmwave received power prediction

Koda, Yusuke; Park, Jihong; Bennis, Mehdi; Yamamoto, Koji; Nishio, Takayuki; Morikura, Masahiro (2019-12-31)

 
Avaa tiedosto
nbnfi-fe2020050424732.pdf (5.217Mt)
nbnfi-fe2020050424732_meta.xml (39.64Kt)
nbnfi-fe2020050424732_solr.xml (29.21Kt)
Lataukset: 

URL:
https://doi.org/10.1145/3360468.3368176

Koda, Yusuke
Park, Jihong
Bennis, Mehdi
Yamamoto, Koji
Nishio, Takayuki
Morikura, Masahiro
Association for Computing Machinery
31.12.2019

Yusuke Koda, Jihong Park, Mehdi Bennis, Koji Yamamoto, Takayuki Nishio, and Masahiro Morikura. 2019. One Pixel Image and RF Signal Based Split Learning for mmWave Received Power Prediction. In Proceedings of the 15th International Conference on emerging Networking EXperiments and Technologies (CoNEXT ’19). Association for Computing Machinery, New York, NY, USA, 54–56. DOI:https://doi.org/10.1145/3360468.3368176

https://rightsstatements.org/vocab/InC/1.0/
© 2019 Copyright held by the owner/author(s). This is the author's version of the work. It is posted here for your personal use. Not for redistribution. The definitive Version of Record was published in 15th International Conference on Emerging Networking EXperiments and Technologies, CoNEXT 2019 - Part of CoNEXT 2019, https://doi.org/10.1145/3360468.3368176.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1145/3360468.3368176
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe2020050424732
Tiivistelmä

Abstract

Focusing on the received power prediction of millimeter-wave (mmWave) radio-frequency (RF) signals, we propose a multimodal split learning (SL) framework that integrates RF received signal powers and depth-images observed by physically separated entities. To improve its communication efficiency while preserving data privacy, we propose an SL neural network architecture that compresses the communication payload, i.e., images. Compared to a baseline solely utilizing RF signals, numerical results show that SL integrating only one pixel image with RF signals achieves higher prediction accuracy while maximizing both communication efficiency and privacy guarantees.

Kokoelmat
  • Avoin saatavuus [38840]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen