Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Incentivize to build : a crowdsourcing framework for federated learning

Pandey, Shashi Raj; Tran, Nguyen H.; Bennis, Mehdi; Tun, Yan Kyaw; Han, Zhu; Hong, Choong Seon (2020-02-27)

 
Avaa tiedosto
nbnfi-fe2020050525025.pdf (457.0Kt)
nbnfi-fe2020050525025_meta.xml (39.32Kt)
nbnfi-fe2020050525025_solr.xml (37.64Kt)
Lataukset: 

URL:
https://doi.org/10.1109/GLOBECOM38437.2019.9014329

Pandey, Shashi Raj
Tran, Nguyen H.
Bennis, Mehdi
Tun, Yan Kyaw
Han, Zhu
Hong, Choong Seon
Institute of Electrical and Electronics Engineers
27.02.2020

S. R. Pandey, N. H. Tran, M. Bennis, Y. K. Tun, Z. Han and C. S. Hong, "Incentivize to Build: A Crowdsourcing Framework for Federated Learning," 2019 IEEE Global Communications Conference (GLOBECOM), Waikoloa, HI, USA, 2019, pp. 1-6, https://doi.org/10.1109/GLOBECOM38437.2019.9014329

https://rightsstatements.org/vocab/InC/1.0/
© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/GLOBECOM38437.2019.9014329
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe2020050525025
Tiivistelmä

Abstract

Federated learning (FL) rests on the notion of training a global model in a decentralized manner. Under this setting, mobile devices perform computations on their local data before uploading the required updates to the central aggregator for improving the global model. However, a key challenge is to maintain communication efficiency (i.e., the number of communications per iteration) when participating clients implement uncoordinated computation strategy during aggregation of model parameters. We formulate a utility maximization problem to tackle this difficulty, and propose a novel crowdsourcing framework, involving a number of participating clients with local training data to leverage FL. We show the incentive-based interaction between the crowdsourcing platform and the participating client’s independent strategies for training a global learning model, where each side maximizes its own benefit. We formulate a two-stage Stackelberg game to analyze such scenario and find the game’s equilibria. Further, we illustrate the efficacy of our proposed framework with simulation results. Results show that the proposed mechanism outperforms the heuristic approach with up to 22% gain in the offered reward to attain a level of target accuracy.

Kokoelmat
  • Avoin saatavuus [38865]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen