Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

A crowdsourcing framework for on-device federated learning

Pandey, Shashi Raj; Tran, Nguyen H.; Bennis, Mehdi; Tun, Yan Kyaw; Manzoor, Aunas; Hong, Choong Seon (2020-02-12)

 
Avaa tiedosto
nbnfi-fe2020060440593.pdf (632.2Kt)
nbnfi-fe2020060440593_meta.xml (38.84Kt)
nbnfi-fe2020060440593_solr.xml (37.59Kt)
Lataukset: 

URL:
https://doi.org/10.1109/TWC.2020.2971981

Pandey, Shashi Raj
Tran, Nguyen H.
Bennis, Mehdi
Tun, Yan Kyaw
Manzoor, Aunas
Hong, Choong Seon
Institute of Electrical and Electronics Engineers
12.02.2020

S. R. Pandey, N. H. Tran, M. Bennis, Y. K. Tun, A. Manzoor and C. S. Hong, "A Crowdsourcing Framework for On-Device Federated Learning," in IEEE Transactions on Wireless Communications, vol. 19, no. 5, pp. 3241-3256, May 2020, doi: 10.1109/TWC.2020.2971981

https://rightsstatements.org/vocab/InC/1.0/
© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/TWC.2020.2971981
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe2020060440593
Tiivistelmä

Abstract

Federated learning (FL) rests on the notion of training a global model in a decentralized manner. Under this setting, mobile devices perform computations on their local data before uploading the required updates to improve the global model. However, when the participating clients implement an uncoordinated computation strategy, the difficulty is to handle the communication efficiency (i.e., the number of communications per iteration) while exchanging the model parameters during aggregation. Therefore, a key challenge in FL is how users participate to build a high-quality global model with communication efficiency. We tackle this issue by formulating a utility maximization problem, and propose a novel crowdsourcing framework to leverage FL that considers the communication efficiency during parameters exchange. First, we show an incentive-based interaction between the crowdsourcing platform and the participating client’s independent strategies for training a global learning model, where each side maximizes its own benefit. We formulate a two-stage Stackelberg game to analyze such scenario and find the game’s equilibria. Second, we formalize an admission control scheme for participating clients to ensure a level of local accuracy. Simulated results demonstrate the efficacy of our proposed solution with up to 22% gain in the offered reward.

Kokoelmat
  • Avoin saatavuus [38865]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen